
Evolving Strategies for the

Prisoner’s Dilemma

Project Demonstration

Andrew Errity

99086921

26th May 2003

What is the Prisoner’s Dilemma?

Two prisoners are placed in separate cells, with the aim of
getting one prisoner to implicate the other. Each prisoner is
given the option to defect against the other, by giving
evidence against them, or to cooperate and withhold
evidence.

• If both prisoners defect (give evidence) then the judge, in no
doubt over their guilt, will send them both to prison for 3 years.

• If both prisoners cooperate (don’t give evidence), then the
judge, with less clear indication of guilt, will send them both to
prison for only 1 year.

• If one prisoner defects and the other does not, the judge will
take this as a clear sign of guilt, allowing the defector
(evidence giver) to walk free whilst sentencing the other
prisoner to 5 years.

Prisoner’s Dilemma - Payoffs

An alternative expression of this situation is given in the
following payoff matrix.

The payoffs are traditionally called:

• T – Temptation to defect

• R – Reward for mutual cooperation

• S – Sucker’s Payoff

• P – Punishment for mutual defection

And the condition T>R>P>S must hold.

Prisoner’s Dilemma - The Dilemma

To Cooperate or To Defect?

• If you think your opponent will cooperate, the rational

choice is to defect to receive the higher payoff.

• If you think your opponent will defect, the rational choice is

also to defect.

However your opponent will come to the same conclusion.

Thus the game, played with two rational players, will always

result in mutual defection. This is unfortunate as both players

could have scored higher if they had cooperated. The fact that

rational logic can result in such a situation is the perplexing

dilemma at the heart of this problem.

Iterated Prisoner’s Dilemma

More interesting situations arise when we consider repeated

plays of the Prisoner’s Dilemma, the Iterated Prisoner’s

Dilemma.

The possibility of future interactions means that actions taken

now could affect future payoffs, thus the simple ‘defect

always’ conclusion no longer holds.

This allows players to develop more sophisticated strategies

for game play which may take into account an opponents

previous moves.

This version of the game was used in this project.

Why study the Prisoner’s Dilemma?

This game may seem simple but it has generated a huge

amount of research and has been used to analyze and

explain a multitude of real world scenarios such as:

• businesses interacting in a market

• personal relationships

• super power negotiations

• trench warfare “live and let live” system of World War I

This project is predominantly concerned with applying the

Prisoner’s Dilemma to show how cooperation can evolve in a

‘hostile’ environment of selfish individuals. The Prisoner’s

Dilemma has proved a powerful tool for explaining the

evolution of cooperation from Robert Axelrod’s pioneering

work to Richard Dawkin’s use of it in his famous work “The

Selfish Gene”.

Genetic Algorithms - Concept

GA’s use evolution as a search strategy.

Mimics evolution in the natural world:

• Natural Selection

 Darwinian ‘Survival of the fittest’

• Natural Genetic operations

 Genetic operations of sexual reproduction

such as crossover and mutation

Genetic Algorithms - Problems

• Representation

• Fitness Function

• Selection

• Reproduction

• Replacement

Genetic Algorithms - Representation

Genotype – the Prisoner’s ‘DNA’

A concise representation of the prisoner’s strategy for
playing the IPD.

Genotype encoded as a binary string, each bit
representing the move to make (1 –C, 0 –D) based
on the game history.

Each prisoner has a 3-game memory

4 possible results for a game (CC, CD, DC, DD)

43 = 64 bits, plus 7 to encode start game moves =
71bit string

Genetic Algorithms – Fitness Function

To evaluate how well a strategy is performing

Prisoner’s dilemma has a natural fitness function, the
game payoffs.

Two models:

•Tournament

•Spatial

Linear fitness scaling was

performed.

0
fmin fmaxfavg

f'min

f'avg

2f'avg

S
c
a
le

d
 F

it
n
e
s
s

Raw Fitness

Spatial Interactions

• 8 surrounding neighbours

• Overlapping edges

Genetic Algorithms – Selection

Which Prisoner’s should be allowed to reproduce?

Roulette-Wheel Selection

• Random spin of a roulette-wheel.

• Each slot represents a Prisoner.

• Probability of landing in each slot is weighted by the
Prisoner’s fitness.

Note: This (importantly) allows weak strategies to
reproduce as well as the fittest.

Genetic Algorithms – Reproduction

Having selected two Prisoner’s how can they produce

offspring?

Crossover:

Mutation

With a (very low) probability flip a bit being copied

from parent to child.

C C C D D C C C D C C C D

D D D D D D D D D D D D D

Crossover Point

Parent A

Parent B

D D D D D D D D D C C C D

D D D DC C C D D C C C D

Child 1

Child 2

Genetic Algorithms – Replacement

How should the resulting offspring be added back to

the population?

In Tournament mode the offspring go on to form a

completely new population (non-overlapping).

In Spatial mode the offspring replace the weakest

prisoner neighbouring the parent (overlapping).

The Program

 …

Tournament Results

Population: 30, Iterations: 100

Population: 70, Iterations: 100

Tournament

Spatial EA Results

Spatial - Evolutionary Algorithm

Population: 1225, Iterations: 100

Generation: 20 Generation: 75 Generation: 150

Spatial GA Results

Spatial - Genetic Algorithm

Population: 1225, Iterations: 100

Generation: 10 Generation: 75 Generation: 150

Problems Encountered

• Responsive GUI – difficulties in providing a
responsive GUI while the genetic algorithm was
running, solved using Multi-threading.

• Premature convergence – this occurred regularly in
early versions. Fitness scaling helped prevent this.

• Out of Memory errors – When running large
simulations, while HW plays a part efforts were made
to improve program efficiency (e.g. modifying some
data structures to Hash tables)

• Speed – Program was initially very slow, this was
overcome by using faster data structures and
improving the efficiency of some code segments.

Possible Improvements

• Saving - Saved Strategies and Rule settings

• Genetic Algorithm – alternative selection,
fitness scaling and replacement techniques

• Seeded initial populations

• Strategy Creator – allow user to create their
own custom strategies

• Improved Randomness – using a CSPRNG

• GUI improvements – better user support

• Prisoner Analysis – allow user to click on a
prisoner in population and view their stats

Questions

?

