

Evolving Strategies for the
Prisoner's Dilemma

Technical Manual

Andrew Errity
CACS4 99086921

Faculty of Computing and Mathematical Sciences
Dublin City University

aerrit-cacs4@computing.dcu.ie
http://www.computing.dcu.ie/~aerrit-cacs4/prisoner/

Supervisor: Dr. Alistair Sutherland

Evolving Strategies for the Prisoner’s Dilemma

 2

Contents
1 Introduction..3
2 Background..3

2.1 Prisoner's Dilemma game ..3
2.2 Iterated Prisoner's Dilemma...4
2.3 Research into the Prisoner's Dilemma ...5
2.4 Genetic Algorithms..5

3 System Design ...5
3.1 System Requirements...6
3.2 Graphical User Interface Design..6

3.2.1 Strategy Evolution ...7
3.2.2 Strategy Analysis ...8

3.3 System Analysis...8
3.3.1 Prisoner’s Dilemma – Object Design ..9
3.3.2 Genetic Algorithm - Object Design ...9
3.3.3 Graphical User Interface - Object Design..10
3.3.4 System Overview...11

4 System Implementation ...12
4.1 Implementation Language ...12
4.2 Genetic Algorithm ...13

4.2.1 Strategy Encoding..13
4.2.2 Fitness Function...14
4.2.3 Fitness Scaling ...15
4.2.4 Fitness Proportional Selection ...16
4.2.5 Reproduction..17
4.2.6 Replacement...18
4.2.7 Search Termination..18
4.2.8 Genetic Algorithm Flowchart ..19

4.3 Spatial Society ...19
4.3.1 Concept and Implementation ...19
4.3.2 Spatial society and the Genetic Algorithm ..20

4.4 Graphical User Interface ..21
4.4.1 Frame and Menu bar ..21
4.4.2 Tournament Evolution GUI ...22
4.4.3 Spatial Society GUI ...23
4.4.4 Interactive GUI ..24

4.5 Problems Encountered ...25
4.6 Possible Improvements ..25

5 Results and Discussion ..26
5.1 Tournament ..26

5.1.1 Tournament evolution..26
5.1.2 Tournament Strategy Analysis...27

5.2 Spatial Society ...28
5.2.1 Evolutionary Algorithm Results ..28
5.2.2 Genetic Algorithm applied to Spatial model29

6 Conclusion ...30
7 References..31
Appendix A - User Manual..32
Appendix B – Source Code..45

Evolving Strategies for the Prisoner’s Dilemma

 3

1 Introduction
The Prisoner's Dilemma is a traditional game model for studying decision making and
self-interest. The objective of this project is to provide an environment in which
strategies for the Prisoner's Dilemma can be evolved, analysed and interacted with.
Moreover this project should provide a means of varying the evolutionary parameters
and game rules and facilitate analysis of the results. The aim is to identify optimal
strategies and the characteristics they share.

This project should allow the user to, via a graphical interface, view the evolution of
strategies and study how a well performing strategy can be generated. This project
should also provide a means of closely analysing the behaviour of strategies and
comparing them with other strategies.

This project should be of interest to users from many fields. Game theorists may be
able to utilise this project to analyse and further understand the Prisoner's Dilemma
game. Social scientists may be interested in studying decision making, self-interest
and the emergence of cooperation using this project. The evolutionary algorithms
used in this project and their results may be of interest to those involved in Artificial
Intelligence or Machine Learning. This project should also be a useful starting point
for the casual user wishing to experiment with any of the above topics.

2 Background
2.1 Prisoner's Dilemma game
In the Prisoner's Dilemma game two players are faced with a choice, they can either
cooperate or defect. Each player is awarded points (called payoff) depending on the
choice they made compared to the choice of the opponent. Each player’s decision
must be made without knowledge of the other player’s next move. The player’s have
no means of communication other than the game choices and there can be no prior
agreement between the players concerning the game.

If both players cooperate they both receive a reward, R. If both players defect
they both receive a punishment, P. If one player defects and the other cooperates, the
defector receives a reward, T the temptation to defect, whilst the player who
cooperated is punished with the sucker’s payoff, S. These game rules (and their
typical values [1, p.8]) are presented in the payoff matrix below [Table 1]

 Player B
 Cooperate

Defect

Player A Cooperate R=3,R=3 S=0,T=5

 Defect T=5,S=0 P=1,P=1

Table 1: Payoff Matrix

The dilemma here is that if both players defect, they both score worse than if both had
cooperated.

Evolving Strategies for the Prisoner’s Dilemma

 4

Assume a rational player is faced with playing a single game (known as one-
shot) of the Prisoner's Dilemma described above and that the player is trying to
maximise their reward. If the player thinks his/her opponent will cooperate, the player
will defect to receive a reward of 5 as opposed to cooperation which would have
earned him/her only 3 points. However if the player thinks his/her opponent will
defect, the rational choice is to also defect and receive 1 point rather than cooperate
and receive the sucker’s payoff of 0 points. Therefore the rational decision is to
always defect.

But assuming the other player is also rational he/she will come to the same
conclusion as the first player. Thus both players will always defect, earning rewards
of 1 point rather than the 3 points that mutual cooperation could have yielded. Therein
lays the dilemma. In game theory the Prisoner's Dilemma can be viewed as a two-
player, non zero-sum and simultaneous game. Game theory has proved that always
defecting is the dominant strategy for this game (the Nash Equilibrium) [2, p.147].
This holds true as long as the payoffs follow the relationship T > R > P > S, and
the gain from mutual cooperation is greater than the average score for defecting and
cooperating, R > (S + T)/ 2.

While this game may seem simple it can be applied to a multitude of real
world scenarios. Problems ranging from businesses interacting in a market, personal
relationships, super power negotiations and the trench warfare “live and let live”
system of World War I have all been studied using some form of the Prisoner's
Dilemma.

2.2 Iterated Prisoner's Dilemma
The Iterated Prisoner's Dilemma (IPD) is an interesting variant of the above game in
which two players play repeated games of the Prisoner's Dilemma against each other.
In the above discussion of the Prisoner's Dilemma the dominant mutual defection
strategy relies on the fact that it is a one-shot game, with no future. The key to the IPD
is that the two players may play each other again; this allows the players to develop
strategies based on previous game interactions. Therefore a player’s move now may
affect how his/her opponent behaves in the future and thus affect the player’s future
payoffs. This removes the single dominant strategy of mutual defection as players use
more complex strategies dependant on game histories in order to maximise the
payoffs they receive. In fact, under the correct circumstances mutual cooperation can
emerge.

The length of the IPD (i.e. the number of repetitions of the Prisoner's Dilemma
played) must not be known to either player, if it was the last iteration would become a
one-shot play of the Prisoner's Dilemma and as the players know they would not play
each other again, both players would defect. Thus the second to last game would be a
one-shot game (not influencing any future) and incur mutual defection, and so on till
all games are one-shot plays of the Prisoner's Dilemma.

This project is concerned with modelling the IPD described above and
devising strategies to play it. The fundamental Prisoner's Dilemma will be used
without alteration. This assumes a player may interact with many others but is
assumed to be interacting with them one at a time. The players will have a memory of
the previous three games only (memory-3 IPD).

Evolving Strategies for the Prisoner’s Dilemma

 5

2.3 Research into the Prisoner's Dilemma
The political scientist Robert Axelrod pioneered research in this field in the late
1970’s [1]. Axelrod was principally concerned with analysing the emergence of
cooperation in populations of self-seeking egotists and used the Prisoner's Dilemma to
represent his studies. As part of this research Axelrod held a series of computer
tournaments in which IPD strategy entries from around the world played games of the
IPD against one another in a round robin fashion. This tournament aimed to identify
optimal strategies for the Prisoner's Dilemma (there is no best strategy; the success of
a strategy depends on the other strategies present). The Tit For Tat strategy (TFT)
won both computer tournaments conducted by Axelrod indicating that it is an optimal
strategy. This strategy simply cooperates on the first move and then only defects if the
other player defected on the previous move.

It is interesting to note that the TFT strategy can never obtain a higher score
than its opponent. However this is unimportant as the Prisoner's Dilemma is a non-
zero sum game, you do not have to do better than your opponent; you have to use
your opponent to get a high score yourself.
 Axelrod found that a strategy normally has four different characteristics to be
successful in a Prisoner's Dilemma tournament:

 Nice – Cooperates on first move
 Retaliatory – will defect if defected against
 Forgiving – can be made to cooperate after starting to defect
 Clarity – don’t be too complex

TFT possesses all of these characteristics. The strategies evolved by this project shall
be examined to see if they exhibit these characteristics.

2.4 Genetic Algorithms
Genetic Algorithms are search algorithms based on the mechanics of natural selection
and natural genetics. They were originally developed by John Holland at the
University of Michigan.

They usually work by beginning with an initial population of random solutions
to a given problem. The success of these solutions is then evaluated according to a
specially designed fitness function. A form of ‘natural selection’ is then performed
whereby solutions with higher fitness scores have a greater probability of being
selected. The selected solutions are then ‘mated’ using genetic operators such as
crossover and mutation. The children produced from this mating go on to form the
next generation. The theory is that as fitter genetic material is propagated from
generation to generation the solutions will converge towards an optimal solution. This
project utilises Genetic Algorithms to evolve successful strategies for playing the
Prisoner's Dilemma.

3 System Design
This section identifies the steps taken to construct the initial system design. This is not
intended as a complete design document but rather a summary of the design process.

The Object Oriented Model was chosen for this system as it provides flexibility,
modularity and maintainability all of which are vital when implementing a system
with a limited timescale.

Evolving Strategies for the Prisoner’s Dilemma

 6

The Unified Modelling Language™ (UML) is the industry-standard language
for specifying, visualizing, constructing, and documenting the artefacts of software
systems [3]. It simplifies the complex process of software design, making a
"blueprint" for construction. UML was used throughout the design process to
guarantee a clear and rigid application design.

3.1 System Requirements
The system requirements were clearly specified in the functional specification
document. This document identified the following requirements of this project:

 Provide a means of evolving strategies to play variants of the IPD (possibly
using Genetic Algorithms)

 Provide a means of testing and analysing the evolution process and the
resulting strategies

 Provide a graphical interface allowing a user to interact with the above
systems

Having identified these requirements the initial system design was created. It was
proposed that the system have two distinct modes – strategy evolution and strategy
analysis.

The strategy evolution mode was planned to allow the user to evolve strategies
for two variants of the IPD – a round robin tournament (as used in Axelrod’s
computer tournament) and a more complex spatial society. The GUI for this mode
would need to display statistics regarding the population percentages of the different
strategy types and statistics regarding the values of payoffs being received. The GUI
would also need to allow the user to control the evolution process.

The strategy analysis mode was envisaged as an area in which the user could
play the Prisoner's Dilemma against evolved strategies and compare and contrast
these strategies. The GUI for this area would require payoff statistics and game
history information as well as controls to vary the analysis.

3.2 Graphical User Interface Design
The above system requirements highlight the importance of the GUI. This will
provide the user’s view of the system. The GUI design philosophies [4] of this project
were:

 Simplicity – Keep the interface simple and straightforward. Ensure the
interface is well organised and uncluttered.

 Obviousness – Make controls easy to find and intuitive. The effect of each
control should be apparent from looking at the control.

 Safety – Protect users from making errors. Provide default values and prevent
users from picking invalid commands or settings.

The system was proposed to have a master view point, with a menu bar from which
rules settings and saved strategies could be configured [Figure 3-1]. These dialogs
launched from the menu bar were not explicitly designed but the design philosophies
were to be taken into consideration when implementing them. The menu bar would
also control which type of GUI would be displayed in the master view – a strategy
evolution window or a strategy analysis window. This menu bar would be accessible
in either mode.

Evolving Strategies for the Prisoner’s Dilemma

 7

Game Type Rules Saved Strategies

Strategy Evolution Window

or

Strategy Analysis Window

Figure 3-1: Master Window

3.2.1 Strategy Evolution
This window must display the strategy evolution of a tournament or spatial society
(chosen from the aforementioned menu bar). To meet the described requirements this
interface needed to display statistics regarding the population percentages of the
different strategy types and statistics regarding the values of payoffs being received.
The interface also needed to allow the user to control the evolution process and
view/save strategies for later analysis. The proposed interface was as follows [Figure
3-2]:

Abstract view of the
population. Dynamically
changing as it evolves.

Different Strategy Types
represented by different

colours.

Graph displaying a 2D line graph of minimum, maximum and
average payoffs for each generation of prisoners.

A key for the strategy colours
of the left pane showing the

strategies percentages.

Current minimum, maximum
and average payoff

Start
evolution

Button

Stop
evolution

Button

Optimal
Strategy

Worst
Strategy

Figure 3-2: Evolution Window

This interface aimed to provide the user with all of the data required without having to
switch between displays. It provided very simple action controls –

 Starting a new population evolution
 Stopping a running evolution
 View/Save the best and worst strategies

Evolving Strategies for the Prisoner’s Dilemma

 8

3.2.2 Strategy Analysis
This window had to provide an environment in which the user could test strategies
and analyse the results. To meet the requirements this window was required to show
payoff statistics and game history information as well as controls to vary the analysis.
A payoff matrix was added to this window in an attempt to aid the users
understanding of the current Prisoner's Dilemma game rules. The proposed window
design was as follows [Figure 3-3]:

Human player Y/N

Select players

Start/Stop Game

Cooperate/Defect

Display the current payoff
matrix

Total Scores

Last game moves

Status

History of a Game moves

Figure 3-3: Strategy Analysis Window

3.3 System Analysis
Having recognized the system requirements above, the next task was to specify the
logical components which would make up the system. The Object Oriented Model
facilitated this and allowed the project to be broken into manageable, reusable
modules.

The project was divided into three logical subsections.

 Prisoner's Dilemma components
 Genetic Algorithm components
 Graphical User Interface components

This would allow the system to be built in three distinct stages.
The basic components needed for each section were then identified. Prior to

implementation the relationships of these objects was designed using a basic form of
UML. The possible implementation details were omitted and only simple component
relationships designed. This provided a simple top-level overview of the objects
which needed to be written.

Evolving Strategies for the Prisoner’s Dilemma

 9

3.3.1 Prisoner’s Dilemma – Object Design
This project subsystem has to provide the basic components to model the Prisoner's
Dilemma. This section forms the projects foundation and its main objective is to
provide a working IPD tournament with players of varying strategies competing. This
subsystem can be further decomposed into several objects.
These objects include:

 Prisoner – A player with a strategy capable of playing the Iterated Prisoner's
Dilemma

 Moves – Used to decode the players strategy to obtain next move
 Game – An interaction of the IPD between two players
 Rules – The payoffs and other game parameters
 Tournament – A round robin tournament in which every player plays every

other player.
A basic UML overview of these objects’ relationships is given below [Figure 3-4]

Moves

GameTournament

1

2

1

1

1

1

1 1..*

1

1..*

Player

Rules

Figure 3-4: Prisoner's Dilemma UML

3.3.2 Genetic Algorithm - Object Design
This subsection has to provide functionality to allow evolution of the Prisoner’s
Dilemma objects. Its aim is to, coupled with the above subsystem, evolve optimal
strategies for the IPD and report statistics regarding this evolution.
The three objects identified in this section are:

 Genetic – Provide Genetic algorithm utilities such as genetic operators
 Spatial – Provide functionality for evolving a spatial society
 Breeder – Provide a genetic algorithm to evolve a population

The relationship of these objects to the project is shown in the basic UML overview
below [Figure 3-5]

Evolving Strategies for the Prisoner’s Dilemma

 10

Breeder

Genetic

Spatial

Player

Rules

1

2

1

21

2

1

2

Figure 3-5: Genetic UML

3.3.3 Graphical User Interface - Object Design
Having designed the graphical user interface above it was necessary to identify the
logical subcomponents of this GUI. This subsystem acts as a middle man between the
system internals and the user. Its purpose is to present the system to the user and
allow the user to perform system operations.
The components of this subsystem include:

 Menu Frame – a master frame which will hold all of the different views. This
should provide a menu bar allowing the user to switch between game modes,
configure parameters and manage strategies.

 Tournament Panel – The tournament game mode GUI described above.
 Spatial Panel – The spatial game mode GUI described above.
 Interactive Panel – The interactive game mode GUI detailed above.
 Rules Dialog – a dialog box allowing the user to set game parameters.
 Strategy Dialog - a dialog box allowing the user to manage strategies.
 Graph Panel – an object which displays information as a line graph
 Pay Off Panel – an object displaying the current payoff matrix

The UML overview below [Figure 3-6] displays a top-level view of the objects which
make up the GUI system and how these objects inter-relate and relate to the other
subsystem components. Several smaller objects from the GUI subsystem have been
omitted for clarity.

Evolving Strategies for the Prisoner’s Dilemma

 11

MenuFrame

TournamentPanel

1

1

SpatialPanel InteractivePanel

GraphPanel

1

1

1

1
{OR}

1

1

1

1

PayoffPanel

11

RulesDialog StrategyDialog

1

1

1
1

Breeder Spatial

Figure 3-6: GUI UML

3.3.4 System Overview
This analysis provides a clear overview of the objects which are necessary to fulfil the
system requirements. The following UML diagram describes the full system design
(several smaller objects from the GUI subsystem have been omitted for clarity)
[Figure 3-7].

Evolving Strategies for the Prisoner’s Dilemma

 12

Moves

GameTournament

1

2

1

1

1

1

1 1..*

1

1..*

Breeder

Genetic

Spatial

Player

Rules

1 2 12

1

2

1

2

MenuFrame

TournamentPanel

1

1

SpatialPanel InteractivePanel

GraphPanel

1

1

1

1
{OR}

1

1

1

1

PayoffPanel

11

RulesDialog StrategyDialog

1

1

1
1

Figure 3-7: System UML Overview

4 System Implementation
This section will outline how the system design described above was implemented. It
is not intended as a complete description of the project code; however it will detail the
more important algorithms and techniques used to realize the functional specification.
For more detail on any of the implementation specifics please see the full source
listing and API documentation available at http://www.computing.dcu.ie/~aerrit-
cacs4/prisoner/.

4.1 Implementation Language
Java version 1.4.1 [5] was chosen as the implementation language for this project.
Java has a number of properties which suited this project:

 Familiar to the programmer – thus faster and less error prone implementation
 Object Oriented – necessary to implement the system design
 Platform independent – Java code will run on any platform that supports Java

without modifying the code
 Swing [6] – built-in GUI libraries which guarantee the same look and feel on

all platforms
The obvious disadvantage with Java is that it is slower than other standard Object
Oriented languages such as C++. However the advantages of using Java were deemed
to outweigh this consideration.
 The project is organized in a package hierarchy (based on the subsystems
identified during the system design) to improve readability and maintainability.

Evolving Strategies for the Prisoner’s Dilemma

 13

4.2 Genetic Algorithm
Genetic Algorithms provide the means by which strategies for the Prisoner's Dilemma
are evolved in this project. As this is the principal objective of the project, naturally
the genetic algorithm used is one of the systems major components. The other system
components have been designed to suit the Genetic Algorithm. As such, in describing
the genetic algorithms implementation most of the other components will also be
described. What follows is a description of how a genetic algorithm was implemented
to evolve strategies to play the Iterated Prisoner's Dilemma.

4.2.1 Strategy Encoding
One of the key issues in genetic algorithms is how to represent the problem. This
issue is very important as genetic algorithms work by directly manipulating a coded
representation of the problem. Conventionally the candidate problem solutions are
encoded as fixed length strings which may be manipulated using standard genetic
operators. A solution’s representation within a Genetic Algorithm is called a
chromosome.
 In this project each chromosome needed to be a strategy for playing the
memory-3 IPD. For each play of the Prisoner's Dilemma there are four possible
outcomes (CC, CD, DC or DD), so in a memory-3 game this indicates 64 (43) possible
histories. Thus a string of length 64 could be used to represent the action to take (C or
D) following each of the game histories. This just leaves the first three moves, those
without a three game history, to encode. Axelrod [7], who first suggested this scheme,
encoded an assumption of the pre-game history of each player as 6 extra bits in the
chromosome, to deal with the first three moves.

The chromosome used in this project uses a slight variation of the Axelrod
encoding scheme. A 64 bit string is used to represent the action to take (1 meaning
cooperate [C], 0 meaning defect [D]) following each possible game history. However
a different means of encoding the initial 3 games is used. Rather than encode an
assumption of the pre-game history, 7 additional bits are used to encode the actions to
take for the first three moves relative to the opponents move. The first bit representing
the first move to play (C or D), the next two bits indicating what second move to play
depending on whether the opponent cooperated or defected, respectively, on the first
move. Bits 4, 5, 6 and 7 of the pre-game information indicate what third move to play
based on the opponents first two moves.

This 7 bit pre-game encoding is pre-pended to the 64 bit encoding scheme to
give a 71 bit chromosome. The full encoding scheme is detailed below [Table 2]. The
history in Table 2 is stated in the order Your first move, Opponents first Move, Your
second move, Opponents second Move, Your third move, Opponents third Move. The
move column indicates what move to play for the given history. Table 2 also shows
how the TFT strategy is encoded using this scheme. The resulting TFT chromosome
is:
CCD
CDC
DCDCDCDCDCDCDCDCD
This is actually stored as a BitSet in Java as follows:
110
10

Evolving Strategies for the Prisoner’s Dilemma

 14

Bit History Move
0 First Move C
1 Opponent C C
2 Opponent D D
3 Opponent CC C
4 Opponent CD D
5 Opponent DC C
6 Opponent DD D
7 C C C C C C C
8 C C C C C D D
9 C C C C D C C
10 C C C C D D D
11 C C C D C C C
12 C C C D C D D
13 C C C D D C C
14 C C C D D D D
15 C C D C C C C
16 C C D C C D D
17 C C D C D C C
18 C C D C D D D
19 C C D D C C C
20 C C D D C D D
21 C C D D D C C
22 C C D D D D D
23 C D C C C C C
24 C D C C C D D
25 C D C C D C C
26 C D C C D D D
27 C D C D C C C
28 C D C D C D D
29 C D C D D C C
30 C D C D D D D
31 C D D C C C C
32 C D D C C D D
33 C D D C D C C
34 C D D C D D D
35 C D D D C C C

36 C D D D C D D
37 C D D D D C C
38 C D D D D D D
39 D C C C C C C
40 D C C C C D D
41 D C C C D C C
42 D C C C D D D
43 D C C D C C C
44 D C C D C D D
45 D C C D D C C
46 D C C D D D D
47 D C D C C C C
48 D C D C C D D
49 D C D C D C C
50 D C D C D D D
51 D C D D C C C
52 D C D D C D D
53 D C D D D C C
54 D C D D D D D
55 D D C C C C C
56 D D C C C D D
57 D D C C D C C
58 D D C C D D D
59 D D C D C C C
60 D D C D C D D
61 D D C D D C C
62 D D C D D D D
63 D D D C C C C
64 D D D C C D D
65 D D D C D C C
66 D D D C D D D
67 D D D D C C C
68 D D D D C D D
69 D D D D D C C
70 D D D D D D D

Table 2: Prisoner Chromosome

Each Prisoner object within the system contains one of these chromosome
strings. When given a game history and asked to make a game move the Prisoner
object decodes the chromosome (using a Moves object) and replies with the
appropriate move.

4.2.2 Fitness Function
The next problem faced when designing a Genetic Algorithm is how to evaluate the
success of each candidate solution. The Prisoner's Dilemma provides a natural means
of evaluating the success, or fitness, of each solution – the game payoffs. These
payoffs are stored in Rules objects within the system. We can state that the strategy
which earns the highest payoff score according to the rules of the IPD is the fittest,

Evolving Strategies for the Prisoner’s Dilemma

 15

while the lowest scoring strategy is the weakest. Thus fitness can be evaluated by
playing the Prisoner objects in some form of IPD. These IPD competitions (and
evolution) are organized in two different ways in this project, Tournament and
Spatial. This section shall discuss the more straightforward IPD tournaments leaving
spatial societies to a later section.
 The Game object was implemented to play a game of IPD for a specified
number of rounds between two players. This object simply keeps track of two
Prisoner’s scores and game histories while asking them for new moves until the
rounds limit is met. The tournament object uses this class to organise a round
robin IPD tournament, akin to Axelrod’s [1] computer tournaments. In such a
tournament an array of Prisoner’s is supplied as the population and every
Prisoner plays an IPD Game against every other Prisoner and themselves.
Each player’s payoff after these interactions have completed is deemed to be the
player’s fitness score.

4.2.3 Fitness Scaling
The fitness scores calculated above will serve to determine which players go on to
reproduce and which players ‘die off’. However these ‘raw’ fitness values present
some problems. The initial populations are likely to have a small number of very high
scoring individuals in a population of ordinary colleagues. If using fitness
proportional selection, these high scorers will take over the population rapidly and
cause the population to converge on one strategy. This strategy will be a mixture of
the high scorers’ strategies, however as the population did not get time to develop
these strategies may be sub-optimal, the population will have converged prematurely.

In the later generations of evolution the individuals should have begun to
converge on a strategy. Thus they will all share very similar chromosomes and the
populations average fitness will likely be very close to the population’s best fitness. In
this situation average members and above average members will have a similar
probability of reproduction. In this situation the natural selection process has ended
and the algorithm is merely performing a random search among the strategies.

It is useful to scale the ‘raw’ fitness scores to help avoid the above situations.
This project uses linear scaling as described by Goldberg [8, p.76]. Linear scaling [9,
p.72] produces a linear relationship between raw fitness, f, and scaled fitness, f`, as
follows:

baff +=′
Coefficients a and b may be calculated as follows:

avg

avg

ff
f

ca
−

−=
max

*)1(

()

avg

avg
avg ff

fcf
fb

−

−
=

max

max)*(
*

Where c is the number of times the fittest individual should be allowed to reproduce.
A value of 2 was found to produce accurate scaling in this system. The effect of this
fitness scaling is shown in Figure 4-1.

Evolving Strategies for the Prisoner’s Dilemma

 16

0
fmin fmaxfavg

f'min

f'avg

2f'avg

Sc
al

ed
 F

itn
es

s
Raw Fitness

Figure 4-1: Linear Fitness Scaling

This scaling works fine for most situations, however in the later stages of evolution
when there are relatively few ‘low’ scoring strategies problems may arise. The
average and best scoring strategies have very close raw fitness and extreme scaling is
required to separate them. Applying this scaling to the few low scorers may result in
them becoming negative [Figure 4-2].

fmin fmaxfavgSc
al

ed
 F

itn
es

s

Raw Fitness

Figure 4-2: Linear Fitness Scaling Negative Values

This can be overcome by adjusting the scaling coefficients to scale the weak strategies
to zero and scale the other strategies as much as is possible. In the case of negative
scaled fitness values the coefficients may be calculated as follows:

minff
f

a
avg

avg

−
=

−
−=

min
min *

ff
f

fb
avg

avg

This scaling helps prevent the early dominance of high scorers, while later on

distinguishes between mediocre and above average strategies. It is implemented in the
Genetic object and applied to all raw fitness scores (i.e. the IPD payoffs) before
performing genetic algorithm selection.

4.2.4 Fitness Proportional Selection
At this point a means of encoding strategies, playing them against one another and
finding their fitness has been described. This section will detail the fundamental
theorem of Genetic Algorithms – selection. The Genetic Algorithm (Breeder and
Spatial class) starts with a population of random chromosomes, evaluates their

Evolving Strategies for the Prisoner’s Dilemma

 17

fitness, scales this fitness and then must choose two strategies (Prisoners) to
reproduce. This selection process is based on the Darwinian principle of natural
selection – the survival of the fittest. The higher the fitness score of a strategy the
greater the probability of it being selected and permitted to reproduce. Thus the
genetic material of the lower scoring strategies will be gradually weeded out of the
population and replaced with the genetic material of the fitter strategies.

Fitness proportional selection was implemented in this project using roulette-
wheel selection [10, p.43]. The principle of this is a search through a roulette wheel
with each slot representing a member of the population and each slot weighted
according to the player’s fitness. This was implemented by first setting a target value,
a random proportion of the sum of all population fitness’s. The population is then
stepped through summing the individual fitness’s until the target value is exceeded.
The individual who caused the target to be exceeded is chosen for selection. The next
selection then proceeds from the position of the last selection with a new target to
select a mate for the first individual. The last individual chosen is excluded from the
search so an individual cannot mate with themselves.

While this scheme is fitness proportional and will mostly select individuals
with above average fitness it is not guaranteed to exclusively select fit individuals. In
fact it will select ‘weak’ individuals some of the time. This is an extremely important
facet of the project. If the selection scheme were to only select fit individuals the
genetic material in the population would rapidly converge on a solution. This can be
defined as exploitation, making the most of the knowledge gained. However if the
original, fit individuals did not possess the genetic material (chromosome segments)
necessary to reach the optimal solution they would converge upon a local optima.
Using a heavily ‘fit’-biased selection technique the genetic algorithm would be
relying on mutation (discussed below) to introduce new genetic material and break the
population from its local optima. The rarity of mutations and small effect which they
have may cause the population to get trapped on the local optima.

To avoid this premature convergence exploration of the search space must be
encouraged. This involves searching with new chromosomes (new strategies), the
fitness of which are, as yet, unknown. One source of new genetic material used in this
program is allowing weak strategies to reproduce occasionally. This mixes their
genetic material with the fit strategies preventing premature convergence. In the later
stages of evolution this exploration naturally lessens as strategies converge and
exploration gives way to exploitation. This balance of exploration and exploitation is
one of the key problems that must be addressed in many forms of Artificial
Intelligence and Machine Learning systems.

4.2.5 Reproduction
Having selected two strategies from the population the Genetic Algorithm proceeds to
mate these two parents and produce their two children. This reproduction is a mirror
of sexual reproduction in which the genetic material of the parents is combined to
produce the children. In this project reproduction allows exploration of the search
space and provides a means of reaching new and hopefully better strategies.
Reproduction is accomplished using two simple yet effective genetic operators –
crossover and mutation, both implemented in the Genetic class.

 Crossover is an artificial implementation of the exchange of genetic
information that occurs in real-life reproduction. It was implemented in this system by

Evolving Strategies for the Prisoner’s Dilemma

 18

breaking both the parent chromosomes at the same randomly chosen point and then
rejoining the parts [Figure 4-3]

C C C D D C C C D C C C D

D D D D D D D D D D D D D

Crossover Point

Parent A

Parent B

D D D D D D D D D C C C D

D D D DC C C D D C C C D

Child 1

Child 2

Figure 4-3: Crossover

This crossover action, when applied to strategies selected proportional to their fitness,
constructs new ideas from high scoring building blocks. The genetic algorithm
implemented in this project performs crossover a large percentage of the time,
however occasionally (5% of the time by default) crossover will not be performed and
simple natural selection will occur.

 In nature small mutations of the genetic material exchanged during
reproduction occurs a very small percentage of the time. However if these mutations
produce an advantageous result they will be propagated throughout the population by
means of natural selection. The possibility of small mutations occurring was included
in this system. A very small percentage of the time (0.1% of the time by default) a bit
copied between the parent and the child will be flipped, representing a mutation.
These mutations provide a means of exploration to the search.

4.2.6 Replacement
The genetic algorithm is run across the population until it has produced enough
children to build a new generation. The children then replace all of the original
population. More complicated replacement techniques such as fit-weak and child-
parent replaced were researched but they were unsuitable for the round robin
tournament nature of the system.

4.2.7 Search Termination
The only termination criteria implemented is a limit to the maximum number of
generations that will run; this may be set by the user. Other termination criteria were
investigated, for example detecting when a population has converged and strategies
are receiving equal payoffs, however these criteria resulted in many false positives

Evolving Strategies for the Prisoner’s Dilemma

 19

and it was decided better to allow the user to judge when the algorithm had reached
the end of useful evolution.

4.2.8 Genetic Algorithm Flowchart
The following flowchart describes the completed genetic algorithm [11 p.29] [Figure
4-4].

Generation = 0

Generate random initial population

Play an IPD tournamnet to evaluate
fitness

New Population Full?

Roulette-Wheel
Selection

Perform
Crossover

Crossover
?

Mutate ? Perform Mutation

Yes

No

Two parents output

Two children output

Generation Limit reached End

No

Yes

Yes

No

Insert children into
new population

Generation++
Yes

No

Figure 4-4: Genetic Algorithm flowchart

4.3 Spatial Society

4.3.1 Concept and Implementation
As a secondary experiment, the concept of a population of agents distributed on a
space was considered. This space is a grid with agents only interacting with their eight
immediate neighbours [Figure 4-5] in games of the IPD. Each agent only occupies

Evolving Strategies for the Prisoner’s Dilemma

 20

one grid cell. This would allow study of the Prisoner's Dilemma and Genetic
Algorithms with geographical implications (namely distance) taken into
consideration.

Figure 4-5: Spatial Interactions

The grid was programmed as a two dimensional array with overlapping edges (the
Spatial object); this meant that every agent on the grid had eight immediate
neighbours, even those at the extreme edges of the grid. This grid layout was used to
form a society of Prisoners interacting in games of the IPD. Each Prisoner would play
there eight immediate neighbours and the payoffs they received would represent their
fitness.
 The calculation of these payoffs could be quite slow for large populations of
Prisoners playing long rounds of the IPD. For example a grid of 100 rows and
columns would hold 10,000 prisoners. If each prisoner played its eight neighbours in
100 iterations of the Prisoner's Dilemma 8 million games of Prisoner's Dilemma
would have to be played. In order to reduce the time taken for such a grid to initialise
a memory system was introduced to the grid whereby if two players had already
played the IPD against one another they would not play again but rather there
previous score would be recalled from memory. This drastically improved
performance, halving the number of Prisoner's Dilemma games required.

4.3.2 Spatial society and the Genetic Algorithm
A number of small alterations to the above Genetic Algorithm were required to apply
it to the spatial grid. The fitness proportional selection previously used simply
selected two ‘fit’ parents from anywhere in the population. This is panmictic mating
[12, p.58] where partners are chosen solely on the basis of performance. This would
violate the isolation by distance created by the spatial grid; that Prisoners can only
interact with their immediate neighbours. To enforce the concept of distance within
the grid the Genetic Algorithm selection scheme was modified so that the first parent
is selected using roulette wheel selection and that Prisoner then chooses its fittest
neighbour to mate with. Reproduction then proceeds as normal.

The spatial grid requires a different replacement procedure than the non-
overlapping populations of the tournament model. Rather than rebuild a completely
new population, the children generated from each Genetic Algorithm run are placed
back into the population (an overlapping population). Each parent identifies their
weakest neighbour and the parent’s child then replaces this weak neighbour. Fitness
scores are then recalculated for the children and the surrounding Prisoners (rather than
the time consuming recalculation of all fitness scores).

Thus the genetic algorithm can be applied to a spatial environment. The
genetic algorithm should be able to maintain several possible solutions in the

Evolving Strategies for the Prisoner’s Dilemma

 21

population. Individuals containing the genes of each population will tend to
congregate together with individuals on the edge providing a smooth transition of
genotype. These congregations may flourish and dissipate or may achieve stability
[12, p.63].

The components used to construct the Genetic Algorithm were also used to
construct a simpler, Evolutionary Algorithm for the spatial grid. This differs from the
Genetic Algorithm in that it does not use the genetic operator of crossover; its only
means of introducing new genetic material is using mutation. Also its means of
selection and replacement vary from the above Genetic Algorithm implementation. A
random Prisoner is chosen at random from the population; this Prisoner finds its fittest
neighbour and is replaced by it (with a small possibility of mutation occurring). This
represents a more extreme view of Darwinian survival of the fittest than the Genetic
Algorithm and should provide an interesting comparison to it.

Some experimentation [13] [14] with spatially distributed agents playing the
IPD has seen the same interesting spatio-temporal patterns that many cellular
automata display emerge. Depending on the parameters used various patterns have
been found to emerge, including frozen evolution, frozen areas of defection and
cooperation and more. The populations evolved using the Genetic and Evolutionary
Algorithm will be examined to see if they display any of these patterns.

4.4 Graphical User Interface
The graphical user interface was implemented using the Java Foundation Class
SWING [6]. The implementation of this GUI closely followed the design described
previously [see above 3.2] this section will discuss how some of the important
components were implemented but will omit the numerous smaller components which
make up the complete application GUI. This section is not intended as a user manual,
for that please consult Appendix A.

4.4.1 Frame and Menu bar
An object (MenuFrame) was implemented as the master frame for the application.
This object contains the Tournament Evolution object, Spatial Evolution object,
game Rules object and saved strategies. These objects all exist within the
MenuFrame object; this gives the MenuFrame the ability to switch between the
different object’s views without losing the data held in each view.

The menu bar [Figure 4-6] provides the user with a set of master options with
which to manipulate the system:

 Rules > Rules Settings [Figure 4-7]: Opens a dialog box which allows the user
to configure game rules such as payoffs and generation limits. The parameters
in this box are validated so illegal entries will not be permitted. The user is
provided with options to save their changes, cancel them or load the default
parameters. The rules set here will apply across all game types. This menu is
also accessible from the individual game screens.

 Strategy > Strategy Manager [Figure 4-8]: The MenuFrame object contains
an array of saved Prisoner’s (initially the classic strategies TFT, ALLC, ALLD
and TFTT). This provides the user with the ability to save strategies for later
analysis. This dialog box allows a user to view and delete the saved strategies.

 Game type [Figure 4-6]: Allows a user to switch between the different game
types –

o Tournament – Evolving strategies for a round robin tournament

Evolving Strategies for the Prisoner’s Dilemma

 22

o Spatial Society – Evolving Strategies for a spatial grid.
o Interactive – Play against strategies and compare strategies.

Figure 4-6: Menu Bar

Figure 4-7: Rules Dialog

Figure 4-8: Strategy Dialog

4.4.2 Tournament Evolution GUI
The TournamentPanel object implements the GUI [Figure 4-9] to evolve
strategies for the IPD round robin tournament. The major problem encountered when
implementing this was the heavy computation required to produce each generation.

Evolving Strategies for the Prisoner’s Dilemma

 23

This computation would cause the GUI to become unresponsive after an evolution
had been started. To overcome this multi-threading was introduced to the system. The
Genetic Algorithm computation was placed in a separate thread from the GUI. This
thread was also responsible for updating the statistics displayed on the GUI. This
allowed the application to remain responsive and dynamically update while the
Genetic Algorithm was executing.

This module contains a Breeder object, the Genetic Algorithm engine,
which is responsible for evolution. This Breeder object is also capable of
presenting the current population to screen. The current population is presented as a
series of rectangles. Each rectangle represents a Prisoner within the population. Each
Prisoner is rendered in a different colour depending on the percentage of C’s and D’s
within its chromosome, that is, the player’s tendency to cooperate or defect. Thus
while evolution is running an abstract view of the types of strategy in the current
population is visible.

This module also uses the GraphPanel object to graph the changing payoffs
from generation to generation.

The controls in this ‘game type’ include buttons to start/stop evolution and
buttons to view the current fittest/weakest player strategies. When a strategy is viewed
the user is also given the option to save this strategy for later use. If the user saves the
strategy it is added to the saved Prisoner array in the MenuFrame object and is then
accessible in the other windows.

Controls

Abstract view of current
population

A single 'balanced' strategy
Player

Line graph charting payoff
statistics varying over

generations

Current Max, Min and
average payoffs

Strategy Population
Percentages & legend for

strategy types

Figure 4-9: Tournament Screen

4.4.3 Spatial Society GUI
A view of spatial grid evolution [Figure 4-10] may also be viewed in the main frame
by selecting it from the menu bar. Switching between the spatial ‘game type’ and
tournament ‘game type’ will cause the currently displayed evolution to stop. If this
did not occur than the system would possibly be overwhelmed trying to run two
separate computationally intensive Genetic Algorithms concurrently.

Evolving Strategies for the Prisoner’s Dilemma

 24

 This window is implemented by the SpatialPanel object which is
implemented in the same manner as above, but rather than use a Breeder object it
uses the spatial variation of the Genetic Algorithm implemented in the Spatial
object. An additional control is also added to allow the user to choose between a
Genetic Algorithm and Evolutionary Algorithm for evolution.
 The view of the current population presented in this window (facilitated by the
Spatial objects ability to draw itself) represents the Prisoners in the population as
small rectangles whose positions are based on their positions on the grid. Thus the
geographical nature of the grid is conveyed.

Controls

View of current population

A single Prisoner

Line graph charting payoff
statistics varying over

generations

Current Max, Min and
average payoffs

Strategy Population
Percentages & legend for

strategy types

Island of defectors

Figure 4-10: Spatial Screen

4.4.4 Interactive GUI
The Interactive ‘game type’ allows to user to play an interactive version of the IPD
against saved strategies or pit two saved strategies against one another. This window
is implemented in the InteractivePanel object. The implementation is
relatively straightforward utilising the Prisoner, Game and Rules objects. The
saved Prisoner’s are loaded from an array in MenuFrame in which the other views
may have saved Prisoners.
 This window [Figure 4-11] provides controls to select “human vs. computer”
or “computer vs. computer” play. In both cases the players play each other in the IPD.
In the case of a human player the user must supply the “Cooperate” or “Defect”
decisions by clicking on the appropriate buttons. In both cases the game history is
stored and displayed along with the current and total payoffs. A visual representation
of the current payoff matrix is also provided to aid in the analysis process.
 Thus this window allows a user to experiment with evolved strategies to
evaluate their traits and relative performance.

Evolving Strategies for the Prisoner’s Dilemma

 25

Controls Last moves

Total Scores

Current
Payoff
Matrix

Game History

Figure 4-11: Interactive Screen

4.5 Problems Encountered
Several technical issues had to be overcome to complete this system implementation:

 Multi-threading: Had to be implemented to separate the genetic algorithm
computation from the GUI computation.

 Speed: Initially the amount of computation required to run the Genetic
Algorithm over a large spatial population took a long time (30s+) to complete.
This made the application cumbersome and impractical. However this was
overcome by improving the efficiency of the algorithm which calculates
spatial fitness scores. The application now runs quickly for populations of up
to ~6000 prisoners. These times are dependant on system hardware
specifications. A PIII 500 MHz with 128MB of RAM is recommended.

 Memory: With very large populations Java may return an “out of memory”
error. This occurs quite rarely and was not seen as a major problem as most of
the interesting results of this project can be found with relatively small
populations. This problem is due the amount memory available and thus varies
from computer to computer.

4.6 Possible Improvements
The time constraints of this project caused several minor implementation details to be
omitted. These were mainly aesthetical and preference was given to more important
system components. Having completed the project it was also clear that some areas
could be improved upon or extended further. Some of the possible additions which
could be made to this system include:

 Saving - Saved Strategies and Rule settings are currently lost when the
application is closed. A means of saving these to disk would be useful

 Genetic Algorithm – It may be interesting to provide several alternative
selection, fitness scaling and replacement techniques to allow comparison
between them. Also some research [15] has been done where initial
populations are seeded with a number of pre-built strategies (TFT…); it may
be interesting to add this functionality to this system.

 Prisoner Analysis – Currently the user can only analyse the fittest and weakest
members of a population. It would be useful to allow the user to click on any
population member and view their strategy and payoffs.

Evolving Strategies for the Prisoner’s Dilemma

 26

 GUI improvements – At present the GUI aims to provide clarity and ease of
use. However it could be improved to provide more informative feedback
(such as dialog boxes when performing ‘dangerous’ actions). Also the GUI
current utilises a custom ‘green’ look and feel, this could be extended to give
the user a choice of skins/themes to change the GUI appearance.

 Strategy Generation – There is currently no means for the user to create their
own custom strategies, this may be a useful addition.

 Randomness – This system depends heavily upon random number generation;
random numbers are used throughout the Genetic Algorithm. Java’s
implementation of a pseudo random number generator (PRNG) was used to
generate these random numbers. This source (seeded with the current time)
provides reasonably random numbers. However the system may be improved
by utilising the extremely random numbers generated from a cryptographically
secure PRNG or a True PRNG.

5 Results and Discussion
The aim of this project was to produce a system which would enable strategies for the
Prisoner's Dilemma to be evolved. This section is not intended as presentation of the
findings of extensive experimentation, rather it endeavours to describe some of the
interesting results found while performing limited experimentation with the system.

5.1 Tournament

5.1.1 Tournament evolution
Experimentation was performed using a population size of 100, an IPD length of 100
iterations and the standard payoffs [Table 1]. Interestingly, despite the game rules
making it difficult, mutual cooperation was seen to emerge on most runs of the
Genetic Algorithm. Occasionally the Genetic Algorithm would prematurely converge
upon a local optima, such as mutual defection, but the majority of the time mutual
cooperation (or a slightly sub-optimal version of it) would emerge.
 The evolutions generally followed the same pattern. At first, defecting
strategies do well by taking advantage of weak strategies, causing the average payoff
to fall. However as defecting strategies grow in the population they run out of victims
to exploit and begin to score poorly. This allows cooperative strategies to dominate
raising the population average. The genetic algorithm eventually converges upon one
strategy, usually a ‘balanced’ strategy or one with a slight tendency to defect.

Figure 5-1: Tournament Payoffs

Evolving Strategies for the Prisoner’s Dilemma

 27

Figure 5-2: Tournament Payoffs

Figure 5-3: Tournament Payoffs

This supports research into strategy evolution and the emergence of cooperation by
Axelrod [1] and Yao [15].

5.1.2 Tournament Strategy Analysis
A number of the strategies evolved for the Tournament competition were analysed in
the Interactive ‘game mode’. This allowed the characteristics of fit individuals to be
identified. The fit individuals all displayed extremely similar characteristics – those
identified by Axelrod [see above 2.3]:

 Nice - Almost all of the optimal strategies involved would always cooperate
with an always cooperating individual. The only deviation from this was
occasionally the strategies would defect on their first move but cooperate
thereafter.

 Retaliatory - The evolved strategies all exhibited some form of defection
pattern after they other player defected.

 Forgiving - This is where the evolved strategies differed slightly from
Axelrod’s findings [1] concerning TFT. Having started defecting the strategies
could be persuaded to begin cooperating again; however this generally took
several game iterations. Thus the evolved strategies were not as forgiving as
TFT.

 Clarity - the nature of the chromosome encoding [Table 2] breeds simple
strategies.

It is also worth noting that these strategies were co-evolved, they were evolved to
perform well in there local environment. When removed from this environment and
played against a foreign strategy these strategies may perform badly. The strategies
evolved from the tournament were tested against the ALLD (always defect) strategy
and generally performed poorly, supporting this theory.

Evolving Strategies for the Prisoner’s Dilemma

 28

5.2 Spatial Society
Some trials of evolution in the spatial society using both the Genetic Algorithm and
Evolutionary Algorithm were conducted. These used the standard payoff parameters
[Table 1], 100 round IPD and 2500 players (50 rows and 50 columns). The legend
used for the strategy types in this experiment is shown below

Figure 5-4: Strategy Legend

5.2.1 Evolutionary Algorithm Results
The payoff statistics were a less informative in this environment as the genetic
algorithm is maintaining many different solution populations. It is more interesting to
examine the strategy populations on the spatial grid. In the early stages of evolution
the populations are randomly distributed [Figure 5-5]. As evolution continues the
different strategy types begin to congregate and form distinct strategy islands [Figure
5-6]. The defectors generally form larger groups in the beginning as they consume
weak strategies. However as the evolution continues and weak strategies die off the
cooperative strategies begin to score more heavily. Thus large populations of
defectors and co operators emerge and fight for dominance. This occasionally results
in one strategy wiping out the other but usually the strategies form stable groups
unchanged by further evolution [Figure 5-7].

Figure 5-5: Initial Spatial population

Figure 5-6: Spatial population mid-

evolution

Evolving Strategies for the Prisoner’s Dilemma

 29

Figure 5-7: Stable Spatial Population s

Due the inherent randomness of the evolutionary algorithm’s selection scheme and
the initial populations this process is quite different each time. Many fascinating
patterns can arise, for example strategies can often be seen invading other strategies
until they have completely consumed them.

5.2.2 Genetic Algorithm applied to Spatial model
The Genetic Algorithm was less successful when applied to the spatial model. While
patterns could be seen to arise they were not as clear cut as those above [Figure 5-9].
This may be due to the fitness proportional selection algorithm focusing on one area
of the grid. It may also be due to the large exchanges of genetic material which take
place in the Genetic Algorithm. This would cause different strategy types to be
scattered about the grid [Figure 5-8]. However it is clear that the genetic algorithm is
in fact optimising the solutions within the grid as the weak strategies, those who
cooperate heavily (green and yellow) die off very quickly.

Figure 5-8: Spatial model genetic evolution

Figure 5-9: Spatial model late genetic

evolution
In order to test if the dispersion of genetic material was preventing the strategy islands
from forming the probability of crossover was reduced to zero. This meant that the
parent individuals would be copied onto their weakest neighbours (a variation of the

Evolving Strategies for the Prisoner’s Dilemma

 30

Evolutionary Algorithm scheme). Having done this strategy islands could be seen to
form as above, supporting the theory.

Figure 5-10: Modified GA applied to Spatial

Model

Figure 5-11: Modified GA applied to Spatial

Model

6 Conclusion
The completed project has accomplished its goals. The Prisoner's Dilemma problem
has been examined and strategies to successfully play the game have been evolved. In
the chapters above these strategies have been analysed and proven to display the
characteristics necessary to play the Prisoner's Dilemma successfully. This project has
also examined a fascinating spatial variant of the Prisoner's Dilemma and evolved
strategies in a geographical context.
 Moreover this project has accomplished its objective of producing a
simulation environment with a graphical user interface. This interface is detailed in
the above chapters and was successfully used to run simulations and examine the
results.

Furthermore the results of simulations run using the implemented system are
consistent with the results of various previous studies.

Evolving Strategies for the Prisoner’s Dilemma

 31

7 References

1. Robert Axelrod, The Evolution of Cooperation, Penguin Books, 1990
2. Shaun P. Hargreaves Heap and Yanis Varoufakis, Game Theory a Critical

Introduction, Routledge, 1995
3. IBM, UML Resource Centre, http://www.rational.com/uml/
4. IBM, Design Basics, http://www-3.ibm.com/ibm/easy/eou_ext.nsf/Publish/6
5. SUN, Java 1.4.1 Overview, http://java.sun.com/j2se/1.4.1/
6. SUN, Java Foundation Classes, http://java.sun.com/products/jfc/
7. Robert Axelrod, The evolution of strategies in the iterated prisoner's

dilemma, In L. Davis (ed.), Genetic algorithms and simulated annealing.
Pitman, 1987

8. David E. Goldberg, Genetic Algorithms in search, optimization, and
machine learning, Addison-Wesley Publishing, 1989

9. Peter J.B. Hancock, Selection Methods for Evolutionary Algorithms, In L.
Chambers (ed.), Practical Handbook of Genetic Algorithms Applications
Volume II, CRC Press, 1995

10. Geoff Bartlett, Genie: A First GA, In L. Chambers (ed.), Practical
Handbook of Genetic Algorithms Applications Volume I, CRC Press, 1995

11. John R. Koza, Genetic Programming On the programming of computers
by means of natural selection, MIT Press, 1992

12. Conor Ryan, Niche Species Formation in Genetic Algorithms, In L.
Chambers (ed.), Practical Handbook of Genetic Algorithms Applications
Volume I, CRC Press, 1995

13. B. Routledge, Co-Evolution and Spatial Interaction, mimeo, University of
British Columbia, 1993

14. Frank Schweitzer, Laxmidhar Behera, Heinz Mühlenbein, Evolution of
Cooperation in a Spatial Prisoner's Dilemma, Advances in Complex
Systems, vol. 5, no. 2-3, pp. 269-299, 2002

15. P.J. Darwen and X. Yao, On Evolving Robust Strategies for the Iterated
Prisoner's Dilemma, 1993

Evolving Strategies for the Prisoner’s Dilemma

 32

Appendix A - User Manual

1. About
Evolutionary Prisoner's Dilemma
This program provides a simulation environment in which strategies for the Iterated
Prisoner's Dilemma can be evolved and analysed.

Author:
Andrew Errity
[CACS4 99086921]
Faculty of Computing and Mathematical Sciences
Dublin City University
aerrit-cacs4@computing.dcu.ie

A website accompanying this project may be found at
http://www.computing.dcu.ie/~aerrit-cacs4/prisoner/. This includes the runnable
program, source code, API and other documentation.

2. About the Prisoner's Dilemma
In the Prisoner's Dilemma game two players are faced with a choice, they can either
cooperate or defect. Each player is awarded points (called payoff) depending on the
choice they made compared to the choice of the opponent. Each player’s decision
must be made without knowledge of the other player’s next move. The player’s have
no means of communication other than the game choices and there can be no prior
agreement between the players concerning the game.

If both players cooperate they both receive a reward, R. If both players defect
they both receive a punishment, P. If one player defects and the other cooperates, the
defector receives a reward, T the temptation to defect, whilst the player who
cooperated is punished with the sucker’s payoff, S. These game rules (and their
typical values) are presented in the payoff matrix below

 Player B
 Cooperate

Defect

Player A Cooperate R=3,R=3 S=0,T=5

 Defect T=5,S=0 P=1,P=1

The dilemma here is that the only choice for rational players is to defect.

The name Prisoner's Dilemma comes from the following description of the problem:
The story is that of two prisoners placed in separate cells, with the aim of getting one
prisoner to implicate the other. Each prisoner is given the option to defect against the
other, by giving evidence against them. If both prisoners defect (give evidence) then
the judge, in no doubt over their guilt, will send them both to prison for 3 years. If
both prisoners cooperate (don’t give evidence), then the judge, with less clear
indication of guilt, will send them both to prison for only 1 year. However if one
prisoner defects and the other does not, the judge will take this as a clear sign of

Evolving Strategies for the Prisoner’s Dilemma

 33

guilt, allowing the defector (evidence giver) to walk free whilst sentencing the other
prisoner to 5 years.

3. System Requirements
In order to successfully run this program your system will require:

 An Operating System capable of running Java
 Java version 1.4.1 or greater, available for download at

http://java.sun.com/j2se/1.4.1/download.html
 A screen resolution of at least 800x600

The recommended hardware specifications are:
 Pentium III 500Mhz
 128MB RAM

4. Installation Instructions
These instructions assume Java version 1.4.1 or greater is installed on your system.

a. Ensure your system meets the system requirements
b. Obtain the file epd.jar. This is available for download at

http://www.computing.dcu.ie/~aerrit-cacs4/prisoner/
c. Save this file to a location on your computer, for example c:\

The epd.jar file is the only file necessary to run the Evolutionary Prisoner's
Dilemma program. To run the program, open a command prompt and run the
following command,

java –jar <file location>\epd.jar
For example under Windows this might be:

java –jar c:\epd.jar
Whereas under a Unix based OS it might be:

java –jar /home/userid/epd.jar

If jar files have been correctly associated with Java in your Operating System
settings you may be able to run the program by simply double clicking the epd.jar
file.

5. Getting Started
When the Evolutionary Prisoner's Dilemma program is first run you will be presented
with the blank application screen.

Evolving Strategies for the Prisoner’s Dilemma

 34

Main Window

The menu bar at the top of this window remains in place in all program modes and
always provides the following options:

 Game Type > Tournament: Opens the Iterated Prisoner's Dilemma
Tournament simulation window [described below] [Warning: Selecting this
option while running a Spatial Simulation will cause the Spatial Simulation to
end]

 Game Type > Spatial Society: Opens the Spatial Society simulation window
[described below] [Warning: Selecting this option while running a
Tournament Simulation will cause the Tournament Simulation to end]

 Game Type > Interactive: Opens the interactive strategy analysis window
[described below]

 Rules > Rules Settings…: Opens a dialog box which allows you to configure
the program settings [described below]

 Strategies > Strategy Manager…: Opens a dialog box which allows you to
view or delete the saved strategies [described below]

6. Rules Settings Dialog
This dialog is accessed by clicking Rules in the menu bar and selecting Rules
Settings.

This dialog allows you to configure the program parameters. Any changes made to the
rules settings will affect all program windows. Changes made to rules during a
simulation will not take effect until the next simulation. Changes made to the rules
from the Interactive window will take effect immediately.

The Rules settings dialog box for the Interactive and Tournament windows is shown
below. The following parameters may be set using the spinners or text entry:

Evolving Strategies for the Prisoner’s Dilemma

 35

Rules Dialog

 Maximum generations: The upper limit on the number of generations the

Genetic Algorithm will produce [not applicable to the Interactive window].
 Number of Players: The number of players in the simulation population [not

applicable to the Interactive window].
 PD Iterations: The number of rounds of the Prisoner's Dilemma played in each

Iterated Prisoner's Dilemma game.
 Temptation, Reward, Punishment, and Sucker’s Payoff: The T, R, P and S

values for the payoff matrix described above.
 Mutate Probability: The probability of genetic mutation occurring during the

Genetic Algorithm reproduction operations [not applicable to the Interactive
window].

 Crossover Probability: The probability of genetic crossover occurring during
the Genetic Algorithm reproduction operations [not applicable to the
Interactive window].

 Save Changes: Saves the currently displayed values
 Cancel: Discard these values and return to the previous values
 Defaults: Loads the program’s preset/recommended rules.

The Rules dialog displayed from the Spatial Society window is shown below:

Evolving Strategies for the Prisoner’s Dilemma

 36

Rules Dialog - Spatial

This is identical to the previous dialog except for:

 Num of Players in each row and column: In the previous dialog this specified
the total number of Prisoner’s in the simulation population. Here this value
specifies the number of Prisoner’s in each row and column, thus the actual
number of prisoners in the population will be the square of this value. This
field is limited to 70.

7. Strategy Manager
This dialog is accessed by clicking Strategies in the menu bar and selecting Strategy
Manager.

This dialog allows you to manage the currently saved strategies.

Strategy Manager Dialog

At start-up, several preset strategies are stored. These are:

 TFT – Tit for Tat, cooperates on first move and will only defect if the
opponent defected on the previous move

Evolving Strategies for the Prisoner’s Dilemma

 37

 TFTT – Tit for Two Tats - cooperates on first move and will only defect if the
opponent defected on the previous two moves

 ALLC – Always cooperates
 ALLD – Always defects

You can select a saved strategy from the drop down-list on the left and perform one of
the following actions:

 View – Displays the strategy string in separate dialog box. For example the
TFT strategy shown below.

 Delete – Removes the saved strategy

 Close - Closes the dialog box

[Warning: When the application is closed any strategies saved in the strategy manager
will be lost.]

8. Game Types
The following section describes the three separate game windows which may be
viewed. These windows may be viewed one at a time using the menu bar Game Type
option.
[Warning: Switching between a Tournament Simulation and Spatial Simulation will
cause any active simulations to end]

a. Tournament
The tournament window allows you to run evolution simulations on populations of
Prisoners playing an Iterated Prisoner’s Dilemma tournament.

When you first open a tournament window the following will be displayed:

Evolving Strategies for the Prisoner’s Dilemma

 38

Tournament Initial Window

This window consists of the following components:

 Main Display: This displays a representation of the current population
during evolution; each Prisoner in the population is represented by a narrow
rectangle. The colour of this rectangle indicates the player’s strategy type.

 Player Type: Provides a legend to the colours displayed on the main display
and also provides strategy population percentage information

 Population Fitness Stats: This pane displays the maximum, minimum and
average payoffs of individuals in the population.

 Graph: Provides a line graph charting the maximum, minimum and average
payoffs for each generation of evolution [Legend appears in upper right
corner].

Evolving Strategies for the Prisoner’s Dilemma

 39

Tournament Window

This window provides the following controls (in addition to the Rules Settings):

 Start – Clears the current population and statistics and starts the evolution of
a new random population of prisoners playing an Iterated Prisoner's
Dilemma tournament.

 Stop – Stops the current evolution but leaves all displays and statistics intact.
 View Fittest Individual – Opens a dialog box showing the strategy which

currently has the highest score.
 View Weakest Individual - Opens a dialog box showing the strategy which

currently has the lowest score.

The strategy dialog boxes which open to display the fit/weak strategies update
dynamically with population changes.

These dialogs allow you to save a Prisoner’s strategy in the strategy manager.
Clicking save in this dialog will open a dialog box [see below] which allows you to
enter a name under which to save the strategy. The strategy that was visible when you
clicked save will be the one added to the strategy manager.

Evolving Strategies for the Prisoner’s Dilemma

 40

Having entered a strategy name clicking save will add the strategy to the strategy
manager for later use.
[Warning: The strategy will be saved in the next free position in the strategy manager;
if no empty spaces exist the strategy will not be saved]
[Warning: When the application is closed any strategies saved in the strategy manager
will be lost.]

b. Spatial Society
The spatial society window allows you to run evolution simulations on populations of
Prisoners playing an Iterated Prisoner’s Dilemma tournament on a spatial grid.

When you first open a spatial society window the following will be displayed:

Spatial Society Initial Window

This window consists of the following components:

 Main Display: This displays a representation of the current population
during evolution; each Prisoner in the population is represented by a small
rectangle. The colour of this rectangle indicates the player’s strategy type.

Evolving Strategies for the Prisoner’s Dilemma

 41

 Player Type: Provides a legend to the colours displayed on the main display
and also provides strategy population percentage information

 Population Fitness Stats: This pane displays the maximum, minimum and
average payoffs of individuals in the population.

 Graph: Provides a line graph charting the maximum, minimum and average
payoffs for each generation of evolution [Legend appears in upper right
corner].

Spatial Society Window

This window provides the following controls (in addition to the Rules Settings):

 Start – Clears the current population and statistics and starts the evolution of
a new random population of prisoners playing an Iterated Prisoner's
Dilemma on a spatial grid.

 Stop – Stops the current evolution but leaves all displays and statistics intact.
 Evolutionary Algorithm/Genetic Algorithm: Allows you to choose which

type of algorithm to use for evolution.
 View Fittest Individual – Opens a dialog box showing the strategy which

currently has the highest score.
 View Weakest Individual - Opens a dialog box showing the strategy which

currently has the lowest score.

The strategy dialog boxes which open to display the fit/weak strategies update
dynamically with population changes.

Evolving Strategies for the Prisoner’s Dilemma

 42

These dialogs allow you to save a Prisoner’s strategy in the strategy manager.
Clicking save in this dialog will open a dialog box [see below] which allows you to
enter a name under which to save the strategy. The strategy that was visible when you
clicked save will be the one added to the strategy manager.

Having entered a strategy name clicking save will add the strategy to the strategy
manager for later use.
[Warning: The strategy will be saved in the next free position in the strategy manager;
if no empty spaces exist the strategy will not be saved]
[Warning: When the application is closed any strategies saved in the strategy manager
will be lost.]

c. Interactive
This window allows you to play games of the Prisoner's Dilemma against saved
strategies and pit saved strategies against one another

When first opened this window will display the following:

Evolving Strategies for the Prisoner’s Dilemma

 43

Interactive Window

The sub-windows which make up this window are:
 Scores: Displays the total payoffs received by each player. Also displays the

results of the last game move. Any status messages, such as errors or
warnings will also be displayed in this window.

 Game History: Displays a record of the moves played by both players in a
scrollable list.

 Payoff matrix: Displays the payoff matrix for the current rule settings. This
is aimed to aid the understanding of the Prisoner's Dilemma.

 Game Controls: Allow you to do the following
o Choose a “Human vs. Computer” or “Computer vs. Computer” game.
o Select the strategies to compete. These strategies are loaded from the

strategy manager and may be viewed by clicking the View Button.
You should select one strategy from the drop down box for “Human
vs. Computer”, this strategy will be your opponent. For “Computer vs.
Computer” you should select two strategies to compete.

o Start – Clicking start in “Computer vs. Computer” mode will play the
Iterated Prisoner’s Dilemma between the selected players as specified
by the Rules Settings. The status of this game will be displayed in the
panels described above.

o Start – In “Human vs. Computer” mode this will start a game of IPD
between you and the computer strategy. You may select your game
move by clicking the cooperate or defect button. The opponents
corresponding move will be displayed in the scores panel.

o Stop – Clicking stop will end the active game but leave all displays and
statistics intact.

Evolving Strategies for the Prisoner’s Dilemma

 44

Human vs. Computer

Computer vs. Computer

Evolving Strategies for the Prisoner’s Dilemma

 45

Appendix B – Source Code
The following pages contain the source code implementation of some of the projects
main components. This is not a full source listing, extracts from some of the important
classes are provided for those interested. Full source code listings and API
documentation are available at http://www.computing.dcu.ie/~aerrit-cacs4/prisoner/

Code listing
Package ie.errity.pd……………………………………………46
Package ie.errity.genetic………………………………53
Package ie.errity.graphics……………………………60

Evolving Strategies for the Prisoner’s Dilemma

 46

Package ie.errity.pd

Extract from Prisoner.java

/**
 *This class represents a Prisoner with a strategy to play the
 *Prisoner's Dilemma {@link ie.errity.pd.Game Game}.
 *@author Andrew Errity 99086921
 */
public class Prisoner implements Cloneable
{
 private String name;
 final private BitSet Strategy;

 private int Score; //total payoffs recieved
 private Moves m; //table used to decode strategy

 /**
 *Create a new Prisoner to play the prisoners dilemma
 *@param na the Prisoner's name
 *@param strat a <code>BitSet</code> representing the player's
strategy
 */
 public Prisoner(String na, BitSet strat)
 {
 name = na;
 Strategy = strat;
 Score= 0;
 m = new Moves();

 }

.
.
.

/**
 *Gets the Prisoner's next game move
 *@param iteration current iteration number
 *@param History game history represented as a <code>BitSet</code>
 *
History should represent previous moves as C=1 and D=0
 *
This players move should be followed by the opponents move, one
 *such pair for each previous iteration of PD
 *@return <code>true</code> or <code>false</code> {C or D}
 */
 public boolean play(int iteration, BitSet History)
 {
 // if first move return start move
 if(iteration == 0)
 return Strategy.get(0);
 // if second move

Evolving Strategies for the Prisoner’s Dilemma

 47

 else if(iteration == 1)
 {
 if(History.get(1)) //opponent Cooperated
 return Strategy.get(1);
 else //opponent Defected
 return Strategy.get(2);
 }
 // if third move
 else if(iteration == 2)
 {
 if(History.get(1) && History.get(3)) //opponent CC
 return Strategy.get(3);
 else if(History.get(1) && !History.get(3)) //opponent CD
 return Strategy.get(4);
 else if(!History.get(1) && History.get(3)) //opponent DC
 return Strategy.get(5);
 else if(!History.get(1) && !History.get(3)) ////opponent DD
 return Strategy.get(6);
 }
 // if normal move use normal strategy
 else
 {
 //Get last 3 sets of moves
 BitSet hist = History.get((iteration*2) - 6, (iteration*2));
 int x = m.get(hist);
 return Strategy.get(x+7); //adjust index to skip setup info
 }
 return false;
 }

 /**
 *Convert the Prisoner's strategy to a string of C's and D's
 *@return a string representation of the Prisoner's strategy
 */
 public String toString()
 {
 String p = new String();
 for(int i = 0; i < 71; i++)
 {
 if(Strategy.get(i))
 p = p + 'C';
 else
 p = p + 'D';
 }
 return p;
 }

Evolving Strategies for the Prisoner’s Dilemma

 48

Moves.java

package ie.errity.pd;

import java.util.Hashtable;
import java.util.BitSet;

/**
 *Table of the 64 possible histories of a 3 game sequence,
 *indexed by numbers from 0-63.
 *@author Andrew Errity 99086921
 */
public class Moves
{
 private Hashtable moves;

 /**
 *Creates a table of the 64 possible histories of a 3 game sequence,
 *indexed by numbers from 0-63.
 */
 public Moves()
 {
 moves = new Hashtable(64);
 String s;

 //Build table of all possible moves (3-game history)
 for(int n = 0; n <64; n++)
 {
 s = Integer.toString(n,2);
 while(s.length() < 6)
 {
 s = '0' + s; //pad to length 6
 }

 BitSet temp = new BitSet(6);
 for(int i = 0; i < 6; i++)
 if(s.charAt(i) == '0')
 temp.set(i);
 moves.put(temp,new Integer(n));
 }
 }

 /**
 *Decodes a 3 game history to an index number
 *@param h a 3 game <code>bitset</code> history
 *@return an index number between 0-63
 */
 public int get(BitSet h)
 {
 Integer x = (Integer)moves.get(h);

Evolving Strategies for the Prisoner’s Dilemma

 49

 return x.intValue();
 }

}

Extract from Rules.java

/**
 *This class represents the rules for a {@link ie.errity.pd.Game Game}
 *of the Prisoner's Dilemma.
 *
Payoff Matrix used is
 *<PRE>
 * -------------------------
 * |Cooperate |Defect |
 *-----------------------------------
 *|Cooperate| R,R | S,T |
 *-----------------------------------
 *|Defect | T,S | P,P |
 *-----------------------------------
 *</PRE>
 *@author Andrew Errity 99086921
 */
public class Rules
{
 private int iterations, generations, players;

 private int T,S,R,P;
 private double mutateP, crossP; //mutate & crossover probabilities
.
.
.

/**
 *Create new game rules with specified parameters

 *@param it the number of PD games to play in an iterated PD
 *@param t the T value for the above payoff matrix
 *@param s the S value for the above payoff matrix
 *@param r the R value for the above payoff matrix
 *@param p the P value for the above payoff matrix
 *@param m the probability of mutation
 *@param c the probability of crossover
 *@param gen the maximum number of generations
 *@param pl the number of players
 */
 public Rules(int it, int t,int s, int r, int p, double m, double c, int gen, int pl)
 {
 iterations = it; //iterations of IPD
 T = t; //Temptation to defect
 S = s; //Sucker's Payoff
 R = r; //Reward for mutual cooperation
 P = p; //Punishment for mutual defection

Evolving Strategies for the Prisoner’s Dilemma

 50

 mutateP = m; //probability of mutation
 crossP = c; //probability of crossover
 generations = gen;
 players = pl;
 }

Extract from Game.java

/**Play a game of IPD according to the rules*/
 public void Play()
 {
 //Init
 int length = rules.getIterations();
 int iteration = 0;
 P1Score = 0;
 P2Score = 0;
 BitSet P1History = new BitSet();
 BitSet P2History = new BitSet();
 boolean P1move, P2move;

 //Play the specified number of PD games
 for(iteration = 0; iteration < length; iteration++)
 {
 //Get each players move
 P1move = P1.play(iteration,P1History);
 P2move = P2.play(iteration,P2History);

 //Update scores according to payoffs
 if(P1move && P2move) //CC
 {
 P1Score += rules.getR();
 P2Score += rules.getR();
 }
 else if(P1move && !P2move) //CD
 {
 P1Score += rules.getS();
 P2Score += rules.getT();

 }
 else if(!P1move && P2move) //DC
 {
 P1Score += rules.getT();
 P2Score += rules.getS();

 }
 else if(!P1move && !P2move) //DD
 {
 P1Score += rules.getP();
 P2Score += rules.getP();

Evolving Strategies for the Prisoner’s Dilemma

 51

 }

 //Update player histories
 if(P1move)
 {
 P1History.set(iteration*2);
 P2History.set((iteration*2)+1);
 }
 else
 {
 P1History.clear(iteration*2);
 P2History.clear((iteration*2)+1);
 }
 if(P2move)
 {
 P1History.set((iteration*2)+1);
 P2History.set((iteration*2));
 }
 else
 {
 P1History.clear((iteration*2)+1);
 P2History.clear((iteration*2));
 }
 }
 //Update each players score
 P1.updateScore(P1Score);
 P2.updateScore(P2Score);
 }

Extract from Tournament.java

/**
 *Play the tournament
 *@return the Tournament results, an array of payoffs corresponding to the
 *player's scores
 */
 public int[] Play()
 {
 int i;
 Game g;
 Prisoner Clone[] = new Prisoner[numPlayers];

 //Every player plays themselves and every other player
 for(i = 0; i < numPlayers; i++)
 {
 Clone[i] = (Prisoner)Players[i].clone();
 Clone[i].setScore(0);
 for(int j = 0; j < numPlayers; j++)
 {
 g = new Game(Clone[i],Players[j],rules);

Evolving Strategies for the Prisoner’s Dilemma

 52

 g.Play();
 }
 Results[i] = Clone[i].getScore();
 }
 //The total pay-offs each player recieved are returned
 Players = Clone;
 done = true;
 return Results;
 }

Evolving Strategies for the Prisoner’s Dilemma

 53

Package ie.errity.pd.genetic

Extract from Genetic.java
/**
 *Provides Genetic operations
 *@author Andrew Errity 99086921
 */
public class Genetic
{

 /**
 *Mate two parents using random, one point crossover
 *@param parenta first parent (<code>BitSet</code> representation)
 *@param parentb second parent (<code>BitSet</code> representation)
 *@return an array containing the two children (<code>BitSet</code>
 *representation)
 */
 public static BitSet[] crossover(BitSet parenta,BitSet parentb)
 {
 Random rand = new Random();
 BitSet child1 = new BitSet(71);
 BitSet child2 = new BitSet(71);

 //One point splicing
 int slicePoint = rand.nextInt(71); //rnd num between 0-70
 BitSet a = (BitSet)parenta.clone();
 a.clear(slicePoint,71);
 BitSet b = (BitSet)parenta.clone();
 b.clear(0,slicePoint);
 BitSet c = (BitSet)parentb.clone();
 c.clear(slicePoint,71);
 BitSet d = (BitSet)parentb.clone();
 d.clear(0,slicePoint);

 //Combine start of p1 with end of p2
 child1.or(a);
 child1.or(d);
 //Combine start of p2 with end of p1
 child2.or(c);
 child2.or(b);

 //Return the children
 BitSet[] offspring = {child1, child2};
 return offspring;
 }

 /**
 *Mutate (Flip a bit in the bitset) with probability mProb
 *@param original the entity to be mutated
 *@param mProb the probability of a bit being mutated

Evolving Strategies for the Prisoner’s Dilemma

 54

 *@return the (possibly) mutated entity
 */
 public static BitSet mutate(BitSet original, double mProb)
 {
 Random rand = new Random();
 for(int m = 0; m < 71; m++)
 {
 //Small possibility a bit copied from parent to child is mutated
 if(rand.nextDouble() <= mProb)
 original.flip(m);
 }
 //Return the (possibly) strategy
 return original;
 }

 /**
 *Linear fitness scaling of an array of
 *{@link ie.errity.pd.Prisoner Prisoners}
 *
Based on the {@link ie.errity.pd.Prisoner Prisoner's} Scores
 *@param curPopulation the array of {@link ie.errity.pd.Prisoner Prisoners}
 * to be scaled
 *@return the scaled fitnesses
 */
 public static int[] scale(Prisoner[] curPopulation)
 {
 //init
 int min, max, total = 0;
 double avg = 0;
 int fs = 0;
 double a,b,fsmax, delta = 0;
 final int cmult = 2;
 int popSize = curPopulation.length;
 int [] scaled = new int[popSize];

 //Calculate min, max and average payoffs
 min = curPopulation[0].getScore();
 max = curPopulation[0].getScore();
 total = curPopulation[0].getScore();
 for(int i = 1; i < popSize; i++)
 {
 if(curPopulation[i].getScore() < min)
 min = curPopulation[i].getScore();
 if(curPopulation[i].getScore() > max)
 max = curPopulation[i].getScore();
 total += curPopulation[i].getScore();
 }
 avg = total/popSize;

Evolving Strategies for the Prisoner’s Dilemma

 55

 //Calculate scaling factors
 if(min > ((cmult*avg - max) / (cmult - 1))) //non-negative test
 {
 delta = max - avg;
 fsmax = cmult * avg;
 a = (cmult-1) * avg / delta;
 b = avg * ((max-fsmax)/delta);
 }
 else //negative: scale as much as possible
 {
 delta = avg - min;
 a = avg / delta;
 b = -1 * min * avg / delta;
 }

 //scale each player's fitness value
 for(int s = 0; s < popSize; s++)
 {
 fs = (int) ((a*curPopulation[s].getScore()) + b);
 scaled[s] = fs;
 }

 return scaled;
 }

Extract from Spatial.java

/**
 *Evolve a new generation using a Genetic algorithm
 */
 public void Mate()
 {
 int [] parent1 = new int[2];
 int [] parent2 = new int[2];
 int [] weak = new int[2];
 BitSet[] Offspring = new BitSet[2];

 //Fitness scale the payoffs
 scaledScores = Genetic.scale(scores);

 //SELECTION
 parent1 = fitSelect();
 parent2 = fitSelectMate(parent1);

 //CROSSOVER
 if(rand.nextDouble() <= rules.getCrossP())
 Offspring = Genetic.crossover(world[parent1[0]][parent1[1]
].getStrat(),world[parent2[0]][parent2[1]].getStrat());

Evolving Strategies for the Prisoner’s Dilemma

 56

 else //CLONE
 {
 Offspring[0] = world[parent1[0]][parent1[1]].getStrat();
 Offspring[1] = world[parent2[0]][parent2[1]].getStrat();
 }

 //MUTATION
 Offspring[0] = Genetic.mutate(Offspring[0], rules.getMutateP());
 Offspring[1] = Genetic.mutate(Offspring[1], rules.getMutateP());

 //REPLACEMENT
 weak = weakReplace(parent1); //find who to replace
 world[weak[0]][weak[1]] = new Prisoner(Offspring[0]);
 update(weak[0],weak[1]); //update scores

 weak = weakReplace(parent2); //find who to replace
 world[weak[0]][weak[1]] = new Prisoner(Offspring[1]);
 update(weak[0],weak[1]); //update scores

 }

/**
 *Evolve a new generation using an Evolutionary algorithm
 */
 public void Evolve()
 {
 //fitness scaling
 scaledScores = Genetic.scale(scores);

 //pick random player
 int x = 0;
 int y = 0;
 try{
 x = rand.nextInt(X);
 y = rand.nextInt(Y);
 }
 catch(Exception e){}
 //find fittest surrounding
 int [] fittest = fitSelectMate(new int[]{x,y});

 //replace current with fittest
 if(scaledScores[fittest[0]][fittest[1]] > scaledScores[x][y])
 {
 //Very small mutatations
 BitSet fitB = world[fittest[0]][fittest[1]].getStrat();
 if(rand.nextDouble() <= rules.getMutateP())
 fitB.flip(rand.nextInt(71));

 Prisoner fit = new Prisoner(fitB);

Evolving Strategies for the Prisoner’s Dilemma

 57

 world[x][y] = fit;
 update(x,y);
 }

 }

 /**
 *Fitness proportional selection (roulette wheel)
 *@return the [x,y] coordinates selected
 */
 private int[] fitSelect()
 {
 double t1, fitSum = 0;
 int target;

 //Set Target Fitness
 for(int i = 0; i < X; i++)
 for(int j = 0; j < Y; j++)
 fitSum += scaledScores[i][j];
 t1 = fitSum * rand.nextDouble();
 target = (int)t1;

 //Build up a sum of fitness
 //the individual who's fitness causes the sum to
 //exceed the target is selected
 int fitness = 0;
 for(int i = lastP[0] + 1; ;i++)
 for(int j = lastP[1] + 1; ;j++)
 {
 if(i >= X)
 i = 0;
 if(j >= Y)
 j = 0;
 if(i != lastP[0] || j != lastP[1])
 fitness += scaledScores[i][j];
 if(fitness >= target)
 {
 lastP[0] = i;
 lastP[1] = j;
 return lastP;
 }
 }

 }

Evolving Strategies for the Prisoner’s Dilemma

 58

Extract from Breeder.java

 /**
 *Breeds the next generation (panmictic mating) of an array of
 *{@link ie.errity.pd.Prisoner Prisoners}
 *@param c initial population (raw fitness of population must be

 *calculated previously)
 *@return the next generation
 */
 public Prisoner[] Breed(Prisoner[] c)
 {
 BitSet Offspring[]; //stores children
 curPopulation = c; //population to breed
 popSize = curPopulation.length;
 Prisoner newPopulation[] = new Prisoner[popSize];;
 int P1,P2,d; //parents and index

 //fitness scaling
 scaledScores = Genetic.scale(curPopulation);

 //Breed new population
 d = 0;
 while(d < popSize)
 {
 Offspring = new BitSet[2];

 //Selection
 P1 = selectRoulette();
 P2 = selectRoulette();

 //Cross Over
 if(rand.nextDouble() <= crossP)
 Offspring =
Genetic.crossover(curPopulation[P1].getStrat(),curPopulation[P2].getStrat());
 else //clone
 {
 Offspring[0] = curPopulation[P1].getStrat();
 Offspring[1] = curPopulation[P2].getStrat();
 }

 //Mutation
 Offspring[0] = Genetic.mutate(Offspring[0],mutateP);
 Offspring[1] = Genetic.mutate(Offspring[1],mutateP);

 //Replacement
 newPopulation[d] = new Prisoner(Offspring[0]);
 if((d+1) < popSize) //in case of odd population
 newPopulation[d+1] = new Prisoner(Offspring[1]);

 d+=2;

Evolving Strategies for the Prisoner’s Dilemma

 59

 }

 curPopulation = newPopulation;
 repaint(); //update display (if any)
 return curPopulation; //return the bred population
 }

 /**
 *Roulette wheel selection
 */
 private int selectRoulette()
 {
 double t1, fitSum = 0;
 int target;

 //Set Target Fitness
 for(int j = 0; j < popSize; j++)
 fitSum += scaledScores[j];
 t1 = fitSum * rand.nextDouble();
 target = (int)t1;

 //Build up a sum of fitness
 //the individual who's fitness causes the sum to
 //exceed the target is selected
 int fitness = 0;
 int nextparent = lastparent;
 while(fitness < target)
 {
 nextparent++;
 if(nextparent >= popSize)
 nextparent = 0;

 if(nextparent != lastparent)
 fitness += scaledScores[nextparent];
 }
 lastparent = nextparent;
 return nextparent; //return index of selected player
 }

Evolving Strategies for the Prisoner’s Dilemma

 60

ie.errity.pd.graphics

Extract from TournamentPanel.java

/**
 *Start Evolution
 *
Runs in a seperated thread so GUI remains responsive
 */
public void start()
{
 if(stopped == true)
 {
 //Separate thread for computationally intensive evolution
 final SwingWorker worker = new SwingWorker()
 {
 public Object construct()
 {
 //init
 int maxIndex, minIndex;
 //capture current settings
 int gen = rules.getGenerations();
 int numP = rules.getNumPlayers();
 Rules r1 = rules;
 graphPanel.setMax(numP*r1.getIterations()*r1.getT());
 //Clear old data
 graphPanel.clear();
 prisTypes = new double[]{0,0,0,0,0,0,0,0};

 /*Non HTML labels
 minLbl.setText("Minimum Payoff: " + (new Integer(0)).toString());
 maxLbl.setText("Maximum Payoff: " + (new Integer(0)).toString());
 avgLbl.setText("Average Payoff: " + (new Double(0)).toString());
 */

 //HTML labels
 minLbl.setText("<html>Minimum Payoff: " +
(new Integer(0)).toString() + "");
 maxLbl.setText("<html>Maximum Payoff: " +
(new Integer(0)).toString() + "");
 avgLbl.setText("<html>Average Payoff: " +
(new Double(0)).toString() + "");

 type0.setText("<html>" + typeNames[0] +
": " + (new Double(0)).toString() + " %" + "");
 type1.setText("<html>" + typeNames[1] +
": " + (new Double(0)).toString() + " %" + "");
 type2.setText("<html>" + typeNames[2] +
": " + (new Double(0)).toString() + " %" + "");

Evolving Strategies for the Prisoner’s Dilemma

 61

 type3.setText("<html>" + typeNames[3] +
": " + (new Double(0)).toString() + " %" + "");
 type4.setText("<html>" + typeNames[4] +
": " + (new Double(0)).toString() + " %" + "");
 type5.setText("<html>" + typeNames[5] +
": " + (new Double(0)).toString() + " %" + "");
 type6.setText("<html>" + typeNames[6] +
": " + (new Double(0)).toString() + " %" + "");
 type7.setText("<html>" + typeNames[7] +
": " + (new Double(0)).toString() + " %" + "");

 b1.setRules(r1);
 Prisoner[] pris = Prisoner.getRand(numP);

 Tournament t1;
 for(int i = 0; i < gen; i++)
 {
 if(stopped) //if stop clicked end

 break;

 t1 = new Tournament(pris,r1);
 t1.Play();

 //***** reporting *******************
 prisTypes = new double[]{0,0,0,0,0,0,0,0};
 prisTypes[pris[0].getType()] = prisTypes[pris[0].getType()] +
1;
 maxIndex = 0;
 minIndex = 0;
 min = pris[0].getScore();
 max = pris[0].getScore();
 total = pris[0].getScore();
 for(int j = 1; j < numP; j++)
 {
 if(pris[j].getScore() < min)
 {
 min = pris[j].getScore();
 minIndex = j;
 }
 if(pris[j].getScore() > max)
 {
 max = pris[j].getScore();
 maxIndex = j;
 }
 total += pris[j].getScore();

Evolving Strategies for the Prisoner’s Dilemma

 62

 prisTypes[pris[j].getType()] =
prisTypes[pris[j].getType()] + 1;
 }
 avg = total/numP;
 graphPanel.addData(min,max,avg);

 type0.setText("<html>" +
typeNames[0] + ": " + (new Double((prisTypes[0]/(double)numP)*100)).toString() +
" %" + "");
 type1.setText("<html>" +
typeNames[1] + ": " + (new Double((prisTypes[1]/(double)numP)*100)).toString() +
" %" + "");
 type2.setText("<html>" +
typeNames[2] + ": " + (new Double((prisTypes[2]/(double)numP)*100)).toString() +
" %" + "");
 type3.setText("<html>" +
typeNames[3] + ": " + (new Double((prisTypes[3]/(double)numP)*100)).toString() +
" %" + "");
 type4.setText("<html>" +
typeNames[4] + ": " + (new Double((prisTypes[4]/(double)numP)*100)).toString() +
" %" + "");
 type5.setText("<html>" +
typeNames[5] + ": " + (new Double((prisTypes[5]/(double)numP)*100)).toString() +
" %" + "");
 type6.setText("<html>" +
typeNames[6] + ": " + (new Double((prisTypes[6]/(double)numP)*100)).toString() +
" %" + "");
 type7.setText("<html>" +
typeNames[7] + ": " + (new Double((prisTypes[7]/(double)numP)*100)).toString() +
" %" + "");

 //Have now calculated player fitnesses, allow user to view
prisoners
 weakDlg.setStrat(pris[minIndex]);
 fitDlg.setStrat(pris[maxIndex]);
 weakBtn.setEnabled(true);
 fitBtn.setEnabled(true);

 /*Non HTML labels
 minLbl.setText("Minimum Payoff: " + (new
Double((double)min/(numP*(double)r1.getIterations()))).toString());
 maxLbl.setText("Maximum Payoff: " + (new
Double((double)max/(numP*(double)r1.getIterations()))).toString());
 avgLbl.setText("Average Payoff: " + (new
Double((double)avg/(numP*(double)r1.getIterations()))).toString());
 */

 //HTML Labels

Evolving Strategies for the Prisoner’s Dilemma

 63

 minLbl.setText("<html>Minimum
Payoff: " + (new Double((double)min/(numP*(double)r1.getIterations()))).toString()
+ "");
 maxLbl.setText("<html>Maximum
Payoff: " + (new Double((double)max/(numP*(double)r1.getIterations()))).toString()
+ "");
 avgLbl.setText("<html>Average Payoff:
" + (new Double((double)avg/(numP*(double)r1.getIterations()))).toString() +
"");

 //**** reporting end *************
 if(stopped) //if stop clicked end
 break;
 //Evolve a generation
 pris = b1.Breed(pris);
 }
 //Finished - Enable/Disable Buttons as required
 stopped = true;
 stopBtn.setEnabled(false);
 startBtn.setEnabled(true);
 return pris;
 }
 };
 //Starting - Enable/Disable Buttons as required
 stopBtn.setEnabled(true);
 startBtn.setEnabled(false);
 stopped = false;
 worker.start(); //Start evolution in background thread
 }
 }

/**
 *Stops Evolution
 *
Ensures background thread is closed
 */
public void stop()
{
 stopped = true;
 //Finished - Enable/Disable Buttons as required
 stopBtn.setEnabled(false);
 startBtn.setEnabled(true);
}

Extract from SpatialPanel.java
/**
 *Start Evolution
 *
Runs in a seperated thread so GUI remains responsive
 */
public void start()

Evolving Strategies for the Prisoner’s Dilemma

 64

{
 if(stopped == true)
 {
 //Separate thread for computationally intensive evolution
 final SwingWorker worker = new SwingWorker()
 {
 public Object construct()
 {
 int maxIndexA, minIndexA, maxIndexB, minIndexB;

 boolean mate = GA; //capture current settings
 Rules r1 = rules; //capture current settings
 int gen = rules.getGenerations();
 int numP = rules.getNumPlayers();

 //Clear old data
 grid.clear();
 graphPanel.clear();
 graphPanel.setMax(8*r1.getIterations()*r1.getT());
 prisTypes = new double[]{0,0,0,0,0,0,0,0};

 /*Non HTML labels
 minLbl.setText("Minimum Payoff: " + (new Integer(0)).toString());
 maxLbl.setText("Maximum Payoff: " + (new Integer(0)).toString());
 avgLbl.setText("Average Payoff: " + (new Double(0)).toString());
 */

 //HTML labels
 minLbl.setText("<html>Minimum Payoff: " +
(new Integer(0)).toString() + "");
 maxLbl.setText("<html>Maximum Payoff: " +
(new Integer(0)).toString() + "");
 avgLbl.setText("<html>Average Payoff: " +
(new Double(0)).toString() + "");

 type0.setText("<html>" + typeNames[0] +
": " + (new Double(0)).toString() + " %" + "");
 type1.setText("<html>" + typeNames[1] +
": " + (new Double(0)).toString() + " %" + "");
 type2.setText("<html>" + typeNames[2] +
": " + (new Double(0)).toString() + " %" + "");
 type3.setText("<html>" + typeNames[3] +
": " + (new Double(0)).toString() + " %" + "");
 type4.setText("<html>" + typeNames[4] +
": " + (new Double(0)).toString() + " %" + "");
 type5.setText("<html>" + typeNames[5] +
": " + (new Double(0)).toString() + " %" + "");
 type6.setText("<html>" + typeNames[6] +
": " + (new Double(0)).toString() + " %" + "");

Evolving Strategies for the Prisoner’s Dilemma

 65

 type7.setText("<html>" + typeNames[7] +
": " + (new Double(0)).toString() + " %" + "");

 Prisoner[][] pris = Prisoner.getRand(numP,numP);

 grid.setRules(r1);
 grid.setPlayers(pris);
 grid.Play(); //initialisation **may be slow with >75^2 players
 int [][] scores;
 //Evolve the set number of generations
 for(int g = 0; g < gen; g++)
 {
 if(stopped) //if stop clicked end
 break;

 //***** reporting *******************
 prisTypes = new double[]{0,0,0,0,0,0,0,0};
 scores = grid.getScores();
 min = scores[0][0];
 max = scores[0][0];
 minIndexA = 0;
 minIndexB = 0;
 maxIndexA = 0;
 maxIndexB = 0;
 total = 0;
 for(int i = 0; i < scores.length; i++)
 {
 for(int j = 0; j < scores[0].length; j++)
 {
 if(scores[i][j] < min)
 {
 min = scores[i][j];
 minIndexA = i;
 minIndexB = j;
 }
 if(scores[i][j] > max)
 {
 max = scores[i][j];
 maxIndexA = i;
 maxIndexB = j;
 }
 total += scores[i][j];

 prisTypes[pris[i][j].getType()] =
prisTypes[pris[i][j].getType()] + 1;
 }
 }
 avg = total/(scores.length*scores[0].length);
 graphPanel.addData(min,max,avg);

Evolving Strategies for the Prisoner’s Dilemma

 66

 type0.setText("<html>" +
typeNames[0] + ": " + (new
Double((prisTypes[0]/(double)(numP*numP))*100)).toString() + " %" + "");
 type1.setText("<html>" +
typeNames[1] + ": " + (new
Double((prisTypes[1]/(double)(numP*numP))*100)).toString() + " %" + "");
 type2.setText("<html>" +
typeNames[2] + ": " + (new
Double((prisTypes[2]/(double)(numP*numP))*100)).toString() + " %" + "");
 type3.setText("<html>" +
typeNames[3] + ": " + (new
Double((prisTypes[3]/(double)(numP*numP))*100)).toString() + " %" + "");
 type4.setText("<html>" +
typeNames[4] + ": " + (new
Double((prisTypes[4]/(double)(numP*numP))*100)).toString() + " %" + "");
 type5.setText("<html>" +
typeNames[5] + ": " + (new
Double((prisTypes[5]/(double)(numP*numP))*100)).toString() + " %" + "");
 type6.setText("<html>" +
typeNames[6] + ": " + (new
Double((prisTypes[6]/(double)(numP*numP))*100)).toString() + " %" + "");
 type7.setText("<html>" +
typeNames[7] + ": " + (new
Double((prisTypes[7]/(double)(numP*numP))*100)).toString() + " %" + "");

 //Have now calculated player fitnesses, allow user to view
prisoners
 weakDlg.setStrat(pris[minIndexA][minIndexB]);
 fitDlg.setStrat(pris[maxIndexA][maxIndexB]);
 weakBtn.setEnabled(true);
 fitBtn.setEnabled(true);

 /*Non HTML Labels
 minLbl.setText("Minimum Payoff: " + (new
Double((double)min/(8*(double)r1.getIterations()))).toString());
 maxLbl.setText("Maximum Payoff: " + (new
Double((double)max/(8*(double)r1.getIterations()))).toString());
 avgLbl.setText("Average Payoff: " + (new
Double((double)avg/(8*(double)r1.getIterations()))).toString());
 */
 //HTML Labels
 minLbl.setText("<html>Minimum
Payoff: " + (new Double((double)min/(8*(double)r1.getIterations()))).toString() +
"");
 maxLbl.setText("<html>Maximum
Payoff: " + (new Double((double)max/(8*(double)r1.getIterations()))).toString() +
"");

Evolving Strategies for the Prisoner’s Dilemma

 67

 avgLbl.setText("<html>Average Payoff:
" + (new Double((double)avg/(8*(double)r1.getIterations()))).toString() + "");
 //***** reporting end *******

 //Evolve a generation
 if(!mate)
 {
 for(int m = 0; m < (numP*numP)/4; m++)
 {
 if(stopped) //if stop clicked end
 break;
 grid.Evolve(); //use the evolutionary Algorithm
 }
 }
 else
 { for(int m = 0; m < (numP*numP)/10; m++)
 {

if(stopped) //if stop clicked end
 break;
 grid.Mate(); //use the Genetic Algorithm
 }
 }
 grid.repaint();
 }
 //Finished - Enable/Disable Buttons as required
 stopped = true;
 stopBtn.setEnabled(false);
 startBtn.setEnabled(true);
 ea.setEnabled(true);
 ga.setEnabled(true);
 return pris;
 }
 };
 //Starting - Enable/Disable Buttons as required
 stopBtn.setEnabled(true);
 startBtn.setEnabled(false);
 ea.setEnabled(false);
 ga.setEnabled(false);
 stopped = false;
 worker.start(); //Start evolution in background thread
 }
}

/**
 *Stops Evolution
 *
Ensures background thread is closed
 */
public void stop()
{
 stopped = true;

Evolving Strategies for the Prisoner’s Dilemma

 68

 //Finished - Enable/Disable Buttons as required
 stopBtn.setEnabled(false);
 startBtn.setEnabled(true);
 ea.setEnabled(true);
 ga.setEnabled(true);
}

Extract from InteractivePanel.java

//Computer vs Computer Play
//Plays all iterations of the PD between the two selected players
//Play is performed in a background thread so GUI remains responsive
//Method is responsible for updating the GUI as required
private void move()
{
if(stopped) //not already playing a game
{
//Create a seperate thread to play the IPD in
final SwingWorker worker = new SwingWorker()
{
public Object construct()
{
 boolean P1move, P2move;

 //Play IPD and update GUI as neccesary
 for(iteration = 0; iteration < itMax; iteration++)
 {
 if(stopped)
 break;
 P1move = opponent.play(iteration,history);
 P2move = opponent2.play(iteration,P2History);

 if(P1move && P2move) //CC
 {
 P1Score = rules.getR();
 P2Score = rules.getR();
 opponentMove.setText("<html><font color=#FF0000
size=+1>Player 1 Cooperated - Payoff: " + (new Integer(P1Score)).toString()+
"");
 yourMove.setText("<html><font color=#0000FF
size=+1>Player 2 Cooperated - Payoff: " + (new Integer(P2Score)).toString()+
"");

 hist1[iteration] = "(Player 1) C vs C (Player 2)";
 list1.setListData(hist1);
 }
 else if(P1move && !P2move) //CD
 {
 P1Score = rules.getS();
 P2Score = rules.getT();

Evolving Strategies for the Prisoner’s Dilemma

 69

 opponentMove.setText("<html><font color=#FF0000
size=+1>Player 1 Cooperated - Payoff: " + (new Integer(P1Score)).toString()+
"");
 yourMove.setText("<html><font color=#0000FF
size=+1>Player 2 Defected - Payoff: " + (new Integer(P2Score)).toString()+
"");

 hist1[iteration] = "(Player 1) C vs D (Player 2)";
 list1.setListData(hist1);
 }
 else if(!P1move && P2move) //DC
 {
 P1Score = rules.getT();
 P2Score = rules.getS();
 opponentMove.setText("<html><font color=#FF0000
size=+1>Player 1 Defected - Payoff: " + (new Integer(P1Score)).toString()+
"");
 yourMove.setText("<html><font color=#0000FF
size=+1>Player 2 Cooperated - Payoff: " + (new Integer(P2Score)).toString()+
"");

 hist1[iteration] = "(Player 1) D vs C (Player 2)";
 list1.setListData(hist1);
 }
 else if(!P1move && !P2move) //DD
 {
 P1Score = rules.getP();
 P2Score = rules.getP();
 opponentMove.setText("<html><font color=#FF0000
size=+1>Player 1 Defected - Payoff: " + (new Integer(P1Score)).toString()+
"");
 yourMove.setText("<html><font color=#0000FF
size=+1>Player 2 Defected - Payoff: " + (new Integer(P2Score)).toString()+
"");

 hist1[iteration] = "(Player 1) D vs D (Player 2)";
 list1.setListData(hist1);
 }

 //Update player histories
 if(P1move)
 {
 history.set(iteration*2);
 P2History.set((iteration*2)+1);
 }
 else
 {
 history.clear(iteration*2);
 P2History.clear((iteration*2)+1);
 }

Evolving Strategies for the Prisoner’s Dilemma

 70

 if(P2move)
 {
 history.set((iteration*2)+1);
 P2History.set((iteration*2));
 }
 else
 {
 history.clear((iteration*2)+1);
 P2History.clear((iteration*2));
 }
 //Update Scores
 P1Total += P1Score;
 P2Total += P2Score;
 opponentScore.setText("<html>Player
1's Total Score: " + (new Integer(P1Total)).toString() + "");
 yourScore.setText("<html>Player 2's
Total Score: " + (new Integer(P2Total)).toString() + "");

 }
 //When all iterations completed
 opponentMove.setText("<html>Game
over!");
 yourMove.setText("<html> ");
 //Enable/Disable buttons as required
 cBtn.setEnabled(false);
 dBtn.setEnabled(false);
 stopBtn.setEnabled(false);
 playBtn.setEnabled(true);
 prisList.setEnabled(true);
 if(!humanp)
 {
 prisList2.setEnabled(true);

 }
 human.setEnabled(true);
 comp.setEnabled(true);
 stopped = true; //Game has ended
 return opponent;
}
};
worker.start(); //Start the game thread
}
}

